opm-simulators/opm/simulators/flow/FlowMain.hpp
Arne Morten Kvarving fdb285c03a changed: rename FlowMain.cpp to FlowUtils.cpp
and add a dedicated header.

this way we don't need to pull in FlowMain.hpp for the prototypes,
avoiding pulling in the entire simulator machinery just to build
some simple utility functions.
2024-03-06 07:57:25 +01:00

589 lines
23 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLOW_MAIN_HEADER_INCLUDED
#define OPM_FLOW_MAIN_HEADER_INCLUDED
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/input/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/models/utils/start.hh>
#include <opm/simulators/flow/Banners.hpp>
#include <opm/simulators/flow/FlowUtils.hpp>
#include <opm/simulators/flow/SimulatorFullyImplicitBlackoil.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
#include <cstddef>
#include <memory>
namespace Opm::Properties {
template<class TypeTag, class MyTypeTag>
struct EnableDryRun {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct OutputInterval {
using type = UndefinedProperty;
};
template<class TypeTag, class MyTypeTag>
struct EnableLoggingFalloutWarning {
using type = UndefinedProperty;
};
// TODO: enumeration parameters. we use strings for now.
template<class TypeTag>
struct EnableDryRun<TypeTag, TTag::FlowProblem> {
static constexpr auto value = "auto";
};
// Do not merge parallel output files or warn about them
template<class TypeTag>
struct EnableLoggingFalloutWarning<TypeTag, TTag::FlowProblem> {
static constexpr bool value = false;
};
template<class TypeTag>
struct OutputInterval<TypeTag, TTag::FlowProblem> {
static constexpr int value = 1;
};
} // namespace Opm::Properties
namespace Opm {
class Deck;
// The FlowMain class is the black-oil simulator.
template <class TypeTag>
class FlowMain
{
public:
using MaterialLawManager = typename GetProp<TypeTag, Properties::MaterialLaw>::EclMaterialLawManager;
using ModelSimulator = GetPropType<TypeTag, Properties::Simulator>;
using Grid = GetPropType<TypeTag, Properties::Grid>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Problem = GetPropType<TypeTag, Properties::Problem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using Simulator = SimulatorFullyImplicitBlackoil<TypeTag>;
FlowMain(int argc, char **argv, bool output_cout, bool output_files )
: argc_{argc}, argv_{argv},
output_cout_{output_cout}, output_files_{output_files}
{
}
// Read the command line parameters. Throws an exception if something goes wrong.
static int setupParameters_(int argc, char** argv, Parallel::Communication comm)
{
using ParamsMeta = GetProp<TypeTag, Properties::ParameterMetaData>;
if (!ParamsMeta::registrationOpen()) {
// We have already successfully run setupParameters_().
// For the dynamically chosen runs (as from the main flow
// executable) we must run this function again with the
// real typetag to be used, as the first time was with the
// "FlowEarlyBird" typetag. However, for the static ones (such
// as 'flow_onephase_energy') it has already been run with the
// correct typetag.
return EXIT_SUCCESS;
}
// register the flow specific parameters
EWOMS_REGISTER_PARAM(TypeTag, std::string, EnableDryRun,
"Specify if the simulation ought to be actually run, or just pretended to be");
EWOMS_REGISTER_PARAM(TypeTag, int, OutputInterval,
"Specify the number of report steps between two consecutive writes of restart data");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableLoggingFalloutWarning,
"Developer option to see whether logging was on non-root processors. In that case it will be appended to the *.DBG or *.PRT files");
Simulator::registerParameters();
// register the base parameters
registerAllParameters_<TypeTag>(/*finalizeRegistration=*/false);
// hide the parameters unused by flow. TODO: this is a pain to maintain
EWOMS_HIDE_PARAM(TypeTag, EnableGravity);
EWOMS_HIDE_PARAM(TypeTag, EnableGridAdaptation);
// this parameter is actually used in eWoms, but the flow well model
// hard-codes the assumption that the intensive quantities cache is enabled,
// so flow crashes. Let's hide the parameter for that reason.
EWOMS_HIDE_PARAM(TypeTag, EnableIntensiveQuantityCache);
// thermodynamic hints are not implemented/required by the eWoms blackoil
// model
EWOMS_HIDE_PARAM(TypeTag, EnableThermodynamicHints);
// in flow only the deck file determines the end time of the simulation
EWOMS_HIDE_PARAM(TypeTag, EndTime);
// time stepping is not done by the eWoms code in flow
EWOMS_HIDE_PARAM(TypeTag, InitialTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepDivisions);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MinTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, PredeterminedTimeStepsFile);
// flow also does not use the eWoms Newton method
EWOMS_HIDE_PARAM(TypeTag, NewtonMaxError);
EWOMS_HIDE_PARAM(TypeTag, NewtonTolerance);
EWOMS_HIDE_PARAM(TypeTag, NewtonTargetIterations);
EWOMS_HIDE_PARAM(TypeTag, NewtonVerbose);
EWOMS_HIDE_PARAM(TypeTag, NewtonWriteConvergence);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumTolerance);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumToleranceExponent);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonStrictIterations);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedVolumeFraction);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedTolerance);
// the default eWoms checkpoint/restart mechanism does not work with flow
EWOMS_HIDE_PARAM(TypeTag, RestartTime);
EWOMS_HIDE_PARAM(TypeTag, RestartWritingInterval);
// hide all vtk related it is not currently possible to do this dependet on if the vtk writing is used
//if(not(EWOMS_GET_PARAM(TypeTag,bool,EnableVtkOutput))){
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePorosity);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePotentialGradients);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePressures);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVars);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVarsMeaning);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteProcessRank);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteRelativePermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedGasOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedOilGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturationRatios);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturations);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTemperature);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteViscosities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteWaterFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteIntrinsicPermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteEclTracerConcentration);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteExtrusionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFilterVelocities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDensities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDofIndex);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMobilities);
//}
EWOMS_HIDE_PARAM(TypeTag, VtkWriteAverageMolarMasses);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacityCoeffs);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMolarities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMoleFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMoleFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTortuosities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDiffusionCoefficients);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteEffectiveDiffusionCoefficients);
// hide average density option
EWOMS_HIDE_PARAM(TypeTag, UseAverageDensityMsWells);
EWOMS_END_PARAM_REGISTRATION(TypeTag);
int mpiRank = comm.rank();
// read in the command line parameters
int status = ::Opm::setupParameters_<TypeTag>(argc, const_cast<const char**>(argv), /*doRegistration=*/false, /*allowUnused=*/true, /*handleHelp=*/(mpiRank==0));
if (status == 0) {
// deal with unknown parameters.
int unknownKeyWords = 0;
if (mpiRank == 0) {
unknownKeyWords = Parameters::printUnused<TypeTag>(std::cerr);
}
int globalUnknownKeyWords = comm.sum(unknownKeyWords);
unknownKeyWords = globalUnknownKeyWords;
if ( unknownKeyWords )
{
if ( mpiRank == 0 )
{
std::string msg = "Aborting simulation due to unknown "
"parameters. Please query \"flow --help\" for "
"supported command line parameters.";
if (OpmLog::hasBackend("STREAMLOG"))
{
OpmLog::error(msg);
}
else {
std::cerr << msg << std::endl;
}
}
return EXIT_FAILURE;
}
// deal with --print-properties and --print-parameters and unknown parameters.
bool doExit = false;
if (EWOMS_GET_PARAM(TypeTag, int, PrintProperties) == 1) {
doExit = true;
if (mpiRank == 0)
Properties::printValues<TypeTag>(std::cout);
}
if (EWOMS_GET_PARAM(TypeTag, int, PrintParameters) == 1) {
doExit = true;
if (mpiRank == 0)
Parameters::printValues<TypeTag>();
}
if (doExit)
return -1;
}
return status;
}
/// This is the main function of Flow. It runs a complete simulation with the
/// given grid and simulator classes, based on the user-specified command-line
/// input.
int execute()
{
return execute_(&FlowMain::runSimulator, /*cleanup=*/true);
}
int executeInitStep()
{
return execute_(&FlowMain::runSimulatorInit, /*cleanup=*/false);
}
// Returns true unless "EXIT" was encountered in the schedule
// section of the input datafile.
int executeStep()
{
return simulator_->runStep(*simtimer_);
}
// Called from Python to cleanup after having executed the last
// executeStep()
int executeStepsCleanup()
{
SimulatorReport report = simulator_->finalize();
runSimulatorAfterSim_(report);
return report.success.exit_status;
}
ModelSimulator* getSimulatorPtr()
{
return modelSimulator_.get();
}
SimulatorTimer* getSimTimer()
{
return simtimer_.get();
}
/// Get the size of the previous report step
double getPreviousReportStepSize()
{
return simtimer_->stepLengthTaken();
}
private:
// called by execute() or executeInitStep()
int execute_(int (FlowMain::* runOrInitFunc)(), bool cleanup)
{
auto logger = [this](const std::exception& e, const std::string& message_start) {
std::ostringstream message;
message << message_start << e.what();
if (this->output_cout_) {
// in some cases exceptions are thrown before the logging system is set
// up.
if (OpmLog::hasBackend("STREAMLOG")) {
OpmLog::error(message.str());
}
else {
std::cout << message.str() << "\n";
}
}
detail::checkAllMPIProcesses();
return EXIT_FAILURE;
};
try {
// deal with some administrative boilerplate
Dune::Timer setupTimerAfterReadingDeck;
setupTimerAfterReadingDeck.start();
int status = setupParameters_(this->argc_, this->argv_, EclGenericVanguard::comm());
if (status)
return status;
setupParallelism();
setupModelSimulator();
createSimulator();
this->deck_read_time_ = modelSimulator_->vanguard().setupTime();
this->total_setup_time_ = setupTimerAfterReadingDeck.elapsed() + this->deck_read_time_;
// if run, do the actual work, else just initialize
int exitCode = (this->*runOrInitFunc)();
if (cleanup) {
executeCleanup_();
}
return exitCode;
}
catch (const TimeSteppingBreakdown& e) {
auto exitCode = logger(e, "Simulation aborted: ");
executeCleanup_();
return exitCode;
}
catch (const std::exception& e) {
auto exitCode = logger(e, "Simulation aborted as program threw an unexpected exception: ");
executeCleanup_();
return exitCode;
}
}
void executeCleanup_() {
// clean up
mergeParallelLogFiles();
}
protected:
void setupParallelism()
{
// determine the rank of the current process and the number of processes
// involved in the simulation. MPI must have already been initialized
// here. (yes, the name of this method is misleading.)
auto comm = EclGenericVanguard::comm();
mpi_rank_ = comm.rank();
mpi_size_ = comm.size();
#if _OPENMP
// if openMP is available, default to 2 threads per process unless
// OMP_NUM_THREADS is set or command line --threads-per-process used
if (!getenv("OMP_NUM_THREADS"))
{
int threads = 2;
const int requested_threads = EWOMS_GET_PARAM(TypeTag, int, ThreadsPerProcess);
if (requested_threads > 0)
threads = requested_threads;
// We are not limiting this to the number of processes
// reported by OpenMP as on some hardware (and some OpenMPI
// versions) this will be 1 when run with mpirun
omp_set_num_threads(threads);
}
#endif
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
ThreadManager::init(false);
}
void mergeParallelLogFiles()
{
// force closing of all log files.
OpmLog::removeAllBackends();
if (mpi_rank_ != 0 || mpi_size_ < 2 || !this->output_files_ || !modelSimulator_) {
return;
}
detail::mergeParallelLogFiles(eclState().getIOConfig().getOutputDir(),
EWOMS_GET_PARAM(TypeTag, std::string, EclDeckFileName),
EWOMS_GET_PARAM(TypeTag, bool, EnableLoggingFalloutWarning));
}
void setupModelSimulator()
{
modelSimulator_ = std::make_unique<ModelSimulator>(EclGenericVanguard::comm(), /*verbose=*/false);
modelSimulator_->executionTimer().start();
modelSimulator_->model().applyInitialSolution();
try {
// Possible to force initialization only behavior (NOSIM).
const std::string& dryRunString = EWOMS_GET_PARAM(TypeTag, std::string, EnableDryRun);
if (dryRunString != "" && dryRunString != "auto") {
bool yesno;
if (dryRunString == "true"
|| dryRunString == "t"
|| dryRunString == "1")
yesno = true;
else if (dryRunString == "false"
|| dryRunString == "f"
|| dryRunString == "0")
yesno = false;
else
throw std::invalid_argument("Invalid value for parameter EnableDryRun: '"
+dryRunString+"'");
auto& ioConfig = eclState().getIOConfig();
ioConfig.overrideNOSIM(yesno);
}
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid EclipseState object" << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
throw;
}
}
const EclipseState& eclState() const
{ return modelSimulator_->vanguard().eclState(); }
EclipseState& eclState()
{ return modelSimulator_->vanguard().eclState(); }
const Schedule& schedule() const
{ return modelSimulator_->vanguard().schedule(); }
// Run the simulator.
int runSimulator()
{
return runSimulatorInitOrRun_(&FlowMain::runSimulatorRunCallback_);
}
int runSimulatorInit()
{
return runSimulatorInitOrRun_(&FlowMain::runSimulatorInitCallback_);
}
private:
// Callback that will be called from runSimulatorInitOrRun_().
int runSimulatorRunCallback_()
{
SimulatorReport report = simulator_->run(*simtimer_);
runSimulatorAfterSim_(report);
return report.success.exit_status;
}
// Callback that will be called from runSimulatorInitOrRun_().
int runSimulatorInitCallback_()
{
simulator_->init(*simtimer_);
return EXIT_SUCCESS;
}
// Output summary after simulation has completed
void runSimulatorAfterSim_(SimulatorReport &report)
{
if (! this->output_cout_) {
return;
}
const int threads
#if !defined(_OPENMP) || !_OPENMP
= 1;
#else
= omp_get_max_threads();
#endif
printFlowTrailer(mpi_size_, threads, total_setup_time_, deck_read_time_, report, simulator_->model().localAccumulatedReports());
detail::handleExtraConvergenceOutput(report,
EWOMS_GET_PARAM(TypeTag, std::string, OutputExtraConvergenceInfo),
R"(OutputExtraConvergenceInfo (--output-extra-convergence-info))",
eclState().getIOConfig().getOutputDir(),
eclState().getIOConfig().getBaseName());
}
// Run the simulator.
int runSimulatorInitOrRun_(int (FlowMain::* initOrRunFunc)())
{
const auto& schedule = this->schedule();
auto& ioConfig = eclState().getIOConfig();
simtimer_ = std::make_unique<SimulatorTimer>();
// initialize variables
const auto& initConfig = eclState().getInitConfig();
simtimer_->init(schedule, static_cast<std::size_t>(initConfig.getRestartStep()));
if (this->output_cout_) {
std::ostringstream oss;
// This allows a user to catch typos and misunderstandings in the
// use of simulator parameters.
if (Parameters::printUnused<TypeTag>(oss)) {
std::cout << "----------------- Unrecognized parameters: -----------------\n";
std::cout << oss.str();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
if (!ioConfig.initOnly()) {
if (this->output_cout_) {
std::string msg;
msg = "\n\n================ Starting main simulation loop ===============\n";
OpmLog::info(msg);
}
return (this->*initOrRunFunc)();
}
else {
if (this->output_cout_) {
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
return EXIT_SUCCESS;
}
}
protected:
/// This is the main function of Flow.
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// Create the simulator instance.
simulator_ = std::make_unique<Simulator>(*modelSimulator_);
}
Grid& grid()
{ return modelSimulator_->vanguard().grid(); }
private:
std::unique_ptr<ModelSimulator> modelSimulator_;
int mpi_rank_ = 0;
int mpi_size_ = 1;
std::any parallel_information_;
std::unique_ptr<Simulator> simulator_;
std::unique_ptr<SimulatorTimer> simtimer_;
int argc_;
char **argv_;
bool output_cout_;
bool output_files_;
double total_setup_time_ = 0.0;
double deck_read_time_ = 0.0;
};
} // namespace Opm
#endif // OPM_FLOW_MAIN_HEADER_INCLUDED