opm-simulators/ebos/equil/initstateequil.hh
Arne Morten Kvarving e1696e6d5b changed: remove duplicated regionmapping class
use version from opm-grid
2019-09-04 15:47:52 +02:00

1189 lines
45 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/**
* \file
*
* \brief Routines that actually solve the ODEs that emerge from the hydrostatic
* equilibrium problem
*/
#ifndef EWOMS_INITSTATEEQUIL_HH
#define EWOMS_INITSTATEEQUIL_HH
#include "equilibrationhelpers.hh"
#include "opm/grid/utility/RegionMapping.hpp"
#include <ewoms/common/propertysystem.hh>
#include <opm/grid/cpgrid/GridHelpers.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/GridProperty.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/Equil.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableContainer.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/TableManager.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/RsvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/RvvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/PbvdTable.hpp>
#include <opm/parser/eclipse/EclipseState/Tables/PdvdTable.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/common/data/SimulationDataContainer.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidstates/SimpleModularFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
#include <array>
#include <cassert>
#include <utility>
#include <vector>
BEGIN_PROPERTIES
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(Grid);
NEW_PROP_TAG(FluidSystem);
END_PROPERTIES
namespace Ewoms {
/**
* Types and routines that collectively implement a basic
* ECLIPSE-style equilibration-based initialisation scheme.
*
* This namespace is intentionally nested to avoid name clashes
* with other parts of OPM.
*/
namespace EQUIL {
namespace Details {
template <class RHS>
class RK4IVP {
public:
RK4IVP(const RHS& f,
const std::array<double,2>& span,
const double y0,
const int N)
: N_(N)
, span_(span)
{
const double h = stepsize();
const double h2 = h / 2;
const double h6 = h / 6;
y_.reserve(N + 1);
f_.reserve(N + 1);
y_.push_back(y0);
f_.push_back(f(span_[0], y0));
for (int i = 0; i < N; ++i) {
const double x = span_[0] + i*h;
const double y = y_.back();
const double k1 = f_[i];
const double k2 = f(x + h2, y + h2*k1);
const double k3 = f(x + h2, y + h2*k2);
const double k4 = f(x + h, y + h*k3);
y_.push_back(y + h6*(k1 + 2*(k2 + k3) + k4));
f_.push_back(f(x + h, y_.back()));
}
assert (y_.size() == std::vector<double>::size_type(N + 1));
}
double
operator()(const double x) const
{
// Dense output (O(h**3)) according to Shampine
// (Hermite interpolation)
const double h = stepsize();
int i = (x - span_[0]) / h;
const double t = (x - (span_[0] + i*h)) / h;
// Crude handling of evaluation point outside "span_";
if (i < 0) { i = 0; }
if (N_ <= i) { i = N_ - 1; }
const double y0 = y_[i], y1 = y_[i + 1];
const double f0 = f_[i], f1 = f_[i + 1];
double u = (1 - 2*t) * (y1 - y0);
u += h * ((t - 1)*f0 + t*f1);
u *= t * (t - 1);
u += (1 - t)*y0 + t*y1;
return u;
}
private:
int N_;
std::array<double,2> span_;
std::vector<double> y_;
std::vector<double> f_;
double
stepsize() const { return (span_[1] - span_[0]) / N_; }
};
namespace PhasePressODE {
template <class FluidSystem>
class Water
{
public:
Water(const double temp,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double /* depth */,
const double press) const
{
return this->density(press) * g_;
}
private:
const double temp_;
const int pvtRegionIdx_;
const double g_;
double
density(const double press) const
{
double rho = FluidSystem::waterPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
rho *= FluidSystem::referenceDensity(FluidSystem::waterPhaseIdx, pvtRegionIdx_);
return rho;
}
};
template <class FluidSystem, class RS>
class Oil
{
public:
Oil(const double temp,
const RS& rs,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, rs_(rs)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const double temp_;
const RS& rs_;
const int pvtRegionIdx_;
const double g_;
double
density(const double depth,
const double press) const
{
double rs = rs_(depth, press, temp_);
double bOil = 0.0;
if (!FluidSystem::enableDissolvedGas() || rs >= FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvtRegionIdx_, temp_, press)) {
bOil = FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
}
else {
bOil = FluidSystem::oilPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rs);
}
double rho = bOil * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
if (FluidSystem::enableDissolvedGas()) {
rho += rs * bOil * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
}
return rho;
}
};
template <class FluidSystem, class RV>
class Gas
{
public:
Gas(const double temp,
const RV& rv,
const int pvtRegionIdx,
const double normGrav)
: temp_(temp)
, rv_(rv)
, pvtRegionIdx_(pvtRegionIdx)
, g_(normGrav)
{}
double
operator()(const double depth,
const double press) const
{
return this->density(depth, press) * g_;
}
private:
const double temp_;
const RV& rv_;
const int pvtRegionIdx_;
const double g_;
double
density(const double depth,
const double press) const
{
double rv = rv_(depth, press, temp_);
double bGas = 0.0;
if (!FluidSystem::enableVaporizedOil() || rv >= FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvtRegionIdx_, temp_, press)) {
bGas = FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvtRegionIdx_, temp_, press);
}
else {
bGas = FluidSystem::gasPvt().inverseFormationVolumeFactor(pvtRegionIdx_, temp_, press, rv);
}
double rho = bGas * FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, pvtRegionIdx_);
if (FluidSystem::enableVaporizedOil()) {
rho += rv * bGas * FluidSystem::referenceDensity(FluidSystem::oilPhaseIdx, pvtRegionIdx_);
}
return rho;
}
};
} // namespace PhasePressODE
namespace PhasePressure {
template <class Grid,
class PressFunction,
class CellRange>
void assign(const Grid& grid,
const std::array<PressFunction, 2>& f ,
const double split,
const CellRange& cells,
std::vector<double>& p)
{
enum { up = 0, down = 1 };
std::vector<double>::size_type c = 0;
for (typename CellRange::const_iterator
ci = cells.begin(), ce = cells.end();
ci != ce; ++ci, ++c)
{
assert (c < p.size());
const double z = Opm::UgGridHelpers::cellCenterDepth(grid, *ci);
p[c] = (z < split) ? f[up](z) : f[down](z);
}
}
template <class FluidSystem,
class Grid,
class Region,
class CellRange>
void water(const Grid& grid,
const Region& reg,
const std::array<double,2>& span ,
const double grav,
double& poWoc,
const CellRange& cells,
std::vector<double>& press)
{
using PhasePressODE::Water;
typedef Water<FluidSystem> ODE;
const double T = 273.15 + 20; // standard temperature for now
ODE drho(T, reg.pvtIdx() , grav);
double z0;
double p0;
if (reg.datum() > reg.zwoc()) {//Datum in water zone
z0 = reg.datum();
p0 = reg.pressure();
}
else {
z0 = reg.zwoc();
p0 = poWoc - reg.pcowWoc(); // Water pressure at contact
}
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> WPress;
std::array<WPress,2> wpress = {
{
WPress(drho, up , p0, 2000)
,
WPress(drho, down, p0, 2000)
}
};
assign(grid, wpress, z0, cells, press);
if (reg.datum() > reg.zwoc()) {
// Return oil pressure at contact
poWoc = wpress[0](reg.zwoc()) + reg.pcowWoc();
}
}
template <class FluidSystem,
class Grid,
class Region,
class CellRange>
void oil(const Grid& grid,
const Region& reg,
const std::array<double,2>& span ,
const double grav,
const CellRange& cells,
std::vector<double>& press,
double& poWoc,
double& poGoc)
{
using PhasePressODE::Oil;
typedef Oil<FluidSystem, typename Region::CalcDissolution> ODE;
const double T = 273.15 + 20; // standard temperature for now
ODE drho(T, reg.dissolutionCalculator(),
reg.pvtIdx(), grav);
double z0;
double p0;
if (reg.datum() > reg.zwoc()) {//Datum in water zone, poWoc given
z0 = reg.zwoc();
p0 = poWoc;
}
else if (reg.datum() < reg.zgoc()) {//Datum in gas zone, poGoc given
z0 = reg.zgoc();
p0 = poGoc;
}
else { //Datum in oil zone
z0 = reg.datum();
p0 = reg.pressure();
}
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> OPress;
std::array<OPress,2> opress = {
{
OPress(drho, up , p0, 2000)
,
OPress(drho, down, p0, 2000)
}
};
assign(grid, opress, z0, cells, press);
const double woc = reg.zwoc();
if (z0 > woc) { poWoc = opress[0](woc); } // WOC above datum
else if (z0 < woc) { poWoc = opress[1](woc); } // WOC below datum
else { poWoc = p0; } // WOC *at* datum
const double goc = reg.zgoc();
if (z0 > goc) { poGoc = opress[0](goc); } // GOC above datum
else if (z0 < goc) { poGoc = opress[1](goc); } // GOC below datum
else { poGoc = p0; } // GOC *at* datum
}
template <class FluidSystem,
class Grid,
class Region,
class CellRange>
void gas(const Grid& grid,
const Region& reg,
const std::array<double,2>& span ,
const double grav,
double& poGoc,
const CellRange& cells,
std::vector<double>& press)
{
using PhasePressODE::Gas;
typedef Gas<FluidSystem, typename Region::CalcEvaporation> ODE;
const double T = 273.15 + 20; // standard temperature for now
ODE drho(T, reg.evaporationCalculator(),
reg.pvtIdx(), grav);
double z0;
double p0;
if (reg.datum() < reg.zgoc()) {//Datum in gas zone
z0 = reg.datum();
p0 = reg.pressure();
}
else {
z0 = reg.zgoc();
p0 = poGoc + reg.pcgoGoc(); // Gas pressure at contact
}
std::array<double,2> up = {{ z0, span[0] }};
std::array<double,2> down = {{ z0, span[1] }};
typedef Details::RK4IVP<ODE> GPress;
std::array<GPress,2> gpress = {
{
GPress(drho, up , p0, 2000)
,
GPress(drho, down, p0, 2000)
}
};
assign(grid, gpress, z0, cells, press);
if (reg.datum() < reg.zgoc()) {
// Return oil pressure at contact
poGoc = gpress[1](reg.zgoc()) - reg.pcgoGoc();
}
}
} // namespace PhasePressure
template <class FluidSystem,
class Grid,
class Region,
class CellRange>
void equilibrateOWG(const Grid& grid,
const Region& reg,
const double grav,
const std::array<double,2>& span,
const CellRange& cells,
std::vector< std::vector<double> >& press)
{
const bool water = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
const bool oil = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
const bool gas = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
const int oilpos = FluidSystem::oilPhaseIdx;
const int waterpos = FluidSystem::waterPhaseIdx;
const int gaspos = FluidSystem::gasPhaseIdx;
if (reg.datum() > reg.zwoc()) { // Datum in water zone
double poWoc = -1;
double poGoc = -1;
if (water) {
PhasePressure::water<FluidSystem>(grid, reg, span, grav, poWoc,
cells, press[waterpos]);
}
if (oil) {
PhasePressure::oil<FluidSystem>(grid, reg, span, grav, cells,
press[oilpos], poWoc, poGoc);
}
if (gas) {
PhasePressure::gas<FluidSystem>(grid, reg, span, grav, poGoc,
cells, press[gaspos]);
}
}
else if (reg.datum() < reg.zgoc()) { // Datum in gas zone
double poWoc = -1;
double poGoc = -1;
if (gas) {
PhasePressure::gas<FluidSystem>(grid, reg, span, grav, poGoc,
cells, press[gaspos]);
}
if (oil) {
PhasePressure::oil<FluidSystem>(grid, reg, span, grav, cells,
press[oilpos], poWoc, poGoc);
}
if (water) {
PhasePressure::water<FluidSystem>(grid, reg, span, grav, poWoc,
cells, press[waterpos]);
}
}
else { // Datum in oil zone
double poWoc = -1;
double poGoc = -1;
if (oil) {
PhasePressure::oil<FluidSystem>(grid, reg, span, grav, cells,
press[oilpos], poWoc, poGoc);
}
if (water) {
PhasePressure::water<FluidSystem>(grid, reg, span, grav, poWoc,
cells, press[waterpos]);
}
if (gas) {
PhasePressure::gas<FluidSystem>(grid, reg, span, grav, poGoc,
cells, press[gaspos]);
}
}
}
} // namespace Details
/**
* Compute initial phase pressures by means of equilibration.
*
* This function uses the information contained in an
* equilibration record (i.e., depths and pressurs) as well as
* a density calculator and related data to vertically
* integrate the phase pressure ODE
* \f[
* \frac{\mathrm{d}p_{\alpha}}{\mathrm{d}z} =
* \rho_{\alpha}(z,p_{\alpha})\cdot g
* \f]
* in which \f$\rho_{\alpha}$ denotes the fluid density of
* fluid phase \f$\alpha\f$, \f$p_{\alpha}\f$ is the
* corresponding phase pressure, \f$z\f$ is the depth and
* \f$g\f$ is the acceleration due to gravity (assumed
* directed downwords, in the positive \f$z\f$ direction).
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] grid Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] grav Acceleration of gravity.
*
* \return Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
*/
template <class FluidSystem, class Grid, class Region, class CellRange>
std::vector< std::vector<double>>
phasePressures(const Grid& grid,
const Region& reg,
const CellRange& cells,
const double grav = Opm::unit::gravity)
{
std::array<double,2> span =
{{ std::numeric_limits<double>::max(),
-std::numeric_limits<double>::max() }}; // Symm. about 0.
int ncell = 0;
{
// This code is only supported in three space dimensions
assert (Grid::dimensionworld == 3);
const int nd = Grid::dimensionworld;
// Define vertical span as
//
// [minimum(node depth(cells)), maximum(node depth(cells))]
//
// Note: We use a sledgehammer approach--looping all
// the nodes of all the faces of all the 'cells'--to
// compute those bounds. This necessarily entails
// visiting some nodes (and faces) multiple times.
//
// Note: The implementation of 'RK4IVP<>' implicitly
// imposes the requirement that cell centroids are all
// within this vertical span. That requirement is not
// checked.
auto cell2Faces = Opm::UgGridHelpers::cell2Faces(grid);
auto faceVertices = Opm::UgGridHelpers::face2Vertices(grid);
for (typename CellRange::const_iterator
ci = cells.begin(), ce = cells.end();
ci != ce; ++ci, ++ncell)
{
for (auto fi=cell2Faces[*ci].begin(),
fe=cell2Faces[*ci].end();
fi != fe;
++fi)
{
for (auto i = faceVertices[*fi].begin(), e = faceVertices[*fi].end();
i != e; ++i)
{
const double z = Opm::UgGridHelpers::vertexCoordinates(grid, *i)[nd-1];
if (z < span[0]) { span[0] = z; }
if (z > span[1]) { span[1] = z; }
}
}
}
}
const int np = FluidSystem::numPhases; //reg.phaseUsage().numPhases;
typedef std::vector<double> pval;
std::vector<pval> press(np, pval(ncell, 0.0));
const double zwoc = reg.zwoc ();
const double zgoc = reg.zgoc ();
// make sure goc and woc is within the span for the phase pressure calculation
span[0] = std::min(span[0],zgoc);
span[1] = std::max(span[1],zwoc);
Details::equilibrateOWG<FluidSystem>(grid, reg, grav, span, cells, press);
return press;
}
/**
* Compute initial phase saturations by means of equilibration.
*
* \tparam FluidSystem The FluidSystem from opm-material
* Must be initialized before used.
*
* \tparam Grid Type of the grid
*
* \tparam Region Type of an equilibration region information
* base. Typically an instance of the EquilReg
* class template.
*
* \tparam CellRange Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \tparam MaterialLawManager The MaterialLawManager from opm-material
*
* \param[in] grid Grid.
* \param[in] reg Current equilibration region.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] materialLawManager The MaterialLawManager from opm-material
* \param[in] swatInit A vector of initial water saturations.
* The capillary pressure is scaled to fit these values
* \param[in] phasePressures Phase pressures, one vector for each active phase,
* of pressure values in each cell in the current
* equilibration region.
* \return Phase saturations, one vector for each phase, each containing
* one saturation value per cell in the region.
*/
template <class FluidSystem, class Grid, class Region, class CellRange, class MaterialLawManager>
std::vector< std::vector<double>>
phaseSaturations(const Grid& grid,
const Region& reg,
const CellRange& cells,
MaterialLawManager& materialLawManager,
const std::vector<double> swatInit,
std::vector< std::vector<double> >& phasePressures)
{
if (!FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
throw std::runtime_error("Cannot initialise: not handling water-gas cases.");
}
std::vector< std::vector<double> > phaseSaturations = phasePressures; // Just to get the right size.
// Adjust oil pressure according to gas saturation and cap pressure
typedef Opm::SimpleModularFluidState<double,
/*numPhases=*/3,
/*numComponents=*/3,
FluidSystem,
/*storePressure=*/false,
/*storeTemperature=*/false,
/*storeComposition=*/false,
/*storeFugacity=*/false,
/*storeSaturation=*/true,
/*storeDensity=*/false,
/*storeViscosity=*/false,
/*storeEnthalpy=*/false> MySatOnlyFluidState;
MySatOnlyFluidState fluidState;
typedef typename MaterialLawManager::MaterialLaw MaterialLaw;
const bool water = FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx);
const bool gas = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
const int oilpos = FluidSystem::oilPhaseIdx;
const int waterpos = FluidSystem::waterPhaseIdx;
const int gaspos = FluidSystem::gasPhaseIdx;
std::vector<double>::size_type localIndex = 0;
for (typename CellRange::const_iterator ci = cells.begin(); ci != cells.end(); ++ci, ++localIndex) {
const int cell = *ci;
const auto& scaledDrainageInfo =
materialLawManager.oilWaterScaledEpsInfoDrainage(cell);
const auto& matParams = materialLawManager.materialLawParams(cell);
// Find saturations from pressure differences by
// inverting capillary pressure functions.
double sw = 0.0;
if (water) {
if (isConstPc<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager,FluidSystem::waterPhaseIdx, cell)){
const double cellDepth = Opm::UgGridHelpers::cellCenterDepth(grid,
cell);
sw = satFromDepth<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager,cellDepth,reg.zwoc(),waterpos,cell,false);
phaseSaturations[waterpos][localIndex] = sw;
}
else {
const double pcov = phasePressures[oilpos][localIndex] - phasePressures[waterpos][localIndex];
if (swatInit.empty()) { // Invert Pc to find sw
sw = satFromPc<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager, waterpos, cell, pcov);
phaseSaturations[waterpos][localIndex] = sw;
}
else { // Scale Pc to reflect imposed sw
sw = swatInit[cell];
sw = materialLawManager.applySwatinit(cell, pcov, sw);
phaseSaturations[waterpos][localIndex] = sw;
}
}
}
double sg = 0.0;
if (gas) {
if (isConstPc<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager,FluidSystem::gasPhaseIdx,cell)){
const double cellDepth = Opm::UgGridHelpers::cellCenterDepth(grid,
cell);
sg = satFromDepth<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager,cellDepth,reg.zgoc(),gaspos,cell,true);
phaseSaturations[gaspos][localIndex] = sg;
}
else {
// Note that pcog is defined to be (pg - po), not (po - pg).
const double pcog = phasePressures[gaspos][localIndex] - phasePressures[oilpos][localIndex];
const double increasing = true; // pcog(sg) expected to be increasing function
sg = satFromPc<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager, gaspos, cell, pcog, increasing);
phaseSaturations[gaspos][localIndex] = sg;
}
}
if (gas && water && (sg + sw > 1.0)) {
// Overlapping gas-oil and oil-water transition
// zones can lead to unphysical saturations when
// treated as above. Must recalculate using gas-water
// capillary pressure.
const double pcgw = phasePressures[gaspos][localIndex] - phasePressures[waterpos][localIndex];
if (! swatInit.empty()) {
// Re-scale Pc to reflect imposed sw for vanishing oil phase.
// This seems consistent with ecl, and fails to honour
// swatInit in case of non-trivial gas-oil cap pressure.
sw = materialLawManager.applySwatinit(cell, pcgw, sw);
}
sw = satFromSumOfPcs<FluidSystem, MaterialLaw, MaterialLawManager>(materialLawManager, waterpos, gaspos, cell, pcgw);
sg = 1.0 - sw;
phaseSaturations[waterpos][localIndex] = sw;
phaseSaturations[gaspos][localIndex] = sg;
if (water) {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, sw);
}
else {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, 0.0);
}
fluidState.setSaturation(FluidSystem::oilPhaseIdx, 1.0 - sw - sg);
fluidState.setSaturation(FluidSystem::gasPhaseIdx, sg);
double pC[/*numPhases=*/3] = { 0.0, 0.0, 0.0 };
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pcGas = pC[FluidSystem::oilPhaseIdx] + pC[FluidSystem::gasPhaseIdx];
phasePressures[oilpos][localIndex] = phasePressures[gaspos][localIndex] - pcGas;
}
phaseSaturations[oilpos][localIndex] = 1.0 - sw - sg;
// Adjust phase pressures for max and min saturation ...
double thresholdSat = 1.0e-6;
double so = 1.0;
double pC[FluidSystem::numPhases] = { 0.0, 0.0, 0.0 };
if (water) {
double swu = scaledDrainageInfo.Swu;
fluidState.setSaturation(FluidSystem::waterPhaseIdx, swu);
so -= swu;
}
if (gas) {
double sgu = scaledDrainageInfo.Sgu;
fluidState.setSaturation(FluidSystem::gasPhaseIdx, sgu);
so-= sgu;
}
fluidState.setSaturation(FluidSystem::oilPhaseIdx, so);
if (water && sw > scaledDrainageInfo.Swu-thresholdSat) {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, scaledDrainageInfo.Swu);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pcWat = pC[FluidSystem::oilPhaseIdx] - pC[FluidSystem::waterPhaseIdx];
phasePressures[oilpos][localIndex] = phasePressures[waterpos][localIndex] + pcWat;
}
else if (gas && sg > scaledDrainageInfo.Sgu-thresholdSat) {
fluidState.setSaturation(FluidSystem::gasPhaseIdx, scaledDrainageInfo.Sgu);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pcGas = pC[FluidSystem::oilPhaseIdx] + pC[FluidSystem::gasPhaseIdx];
phasePressures[oilpos][localIndex] = phasePressures[gaspos][localIndex] - pcGas;
}
if (gas && sg < scaledDrainageInfo.Sgl+thresholdSat) {
fluidState.setSaturation(FluidSystem::gasPhaseIdx, scaledDrainageInfo.Sgl);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pcGas = pC[FluidSystem::oilPhaseIdx] + pC[FluidSystem::gasPhaseIdx];
phasePressures[gaspos][localIndex] = phasePressures[oilpos][localIndex] + pcGas;
}
if (water && sw < scaledDrainageInfo.Swl+thresholdSat) {
fluidState.setSaturation(FluidSystem::waterPhaseIdx, scaledDrainageInfo.Swl);
MaterialLaw::capillaryPressures(pC, matParams, fluidState);
double pcWat = pC[FluidSystem::oilPhaseIdx] - pC[FluidSystem::waterPhaseIdx];
phasePressures[waterpos][localIndex] = phasePressures[oilpos][localIndex] - pcWat;
}
}
return phaseSaturations;
}
/**
* Compute initial Rs values.
*
* \tparam CellRangeType Type of cell range that demarcates the
* cells pertaining to the current
* equilibration region. Must implement
* methods begin() and end() to bound the range
* as well as provide an inner type,
* const_iterator, to traverse the range.
*
* \param[in] grid Grid.
* \param[in] cells Range that spans the cells of the current
* equilibration region.
* \param[in] oilPressure Oil pressure for each cell in range.
* \param[in] temperature Temperature for each cell in range.
* \param[in] rsFunc Rs as function of pressure and depth.
* \return Rs values, one for each cell in the 'cells' range.
*/
template <class Grid, class CellRangeType>
std::vector<double> computeRs(const Grid& grid,
const CellRangeType& cells,
const std::vector<double> oilPressure,
const std::vector<double>& temperature,
const Miscibility::RsFunction& rsFunc,
const std::vector<double> gasSaturation)
{
assert(Grid::dimensionworld == 3);
std::vector<double> rs(cells.size());
int count = 0;
for (auto it = cells.begin(); it != cells.end(); ++it, ++count) {
const double depth = Opm::UgGridHelpers::cellCenterDepth(grid, *it);
rs[count] = rsFunc(depth, oilPressure[count], temperature[count], gasSaturation[count]);
}
return rs;
}
namespace DeckDependent {
inline std::vector<Opm::EquilRecord>
getEquil(const Opm::EclipseState& state)
{
const auto& init = state.getInitConfig();
if(!init.hasEquil()) {
throw std::domain_error("Deck does not provide equilibration data.");
}
const auto& equil = init.getEquil();
return { equil.begin(), equil.end() };
}
template<class Grid>
std::vector<int>
equilnum(const Opm::EclipseState& eclipseState,
const Grid& grid)
{
std::vector<int> eqlnum;
if (eclipseState.get3DProperties().hasDeckIntGridProperty("EQLNUM")) {
const int nc = grid.size(/*codim=*/0);
eqlnum.resize(nc);
const std::vector<int>& e =
eclipseState.get3DProperties().getIntGridProperty("EQLNUM").getData();
const int* gc = Opm::UgGridHelpers::globalCell(grid);
for (int cell = 0; cell < nc; ++cell) {
const int deckPos = (gc == NULL) ? cell : gc[cell];
eqlnum[cell] = e[deckPos] - 1;
}
}
else {
// No explicit equilibration region.
// All cells in region zero.
eqlnum.assign(grid.size(/*codim=*/0), 0);
}
return eqlnum;
}
template<class TypeTag>
class InitialStateComputer
{
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
public:
template<class MaterialLawManager>
InitialStateComputer(MaterialLawManager& materialLawManager,
const Opm::EclipseState& eclipseState,
const Grid& grid,
const double grav = Opm::unit::gravity,
const bool applySwatInit = true)
: temperature_(grid.size(/*codim=*/0)),
pp_(FluidSystem::numPhases,
std::vector<double>(grid.size(/*codim=*/0))),
sat_(FluidSystem::numPhases,
std::vector<double>(grid.size(/*codim=*/0))),
rs_(grid.size(/*codim=*/0)),
rv_(grid.size(/*codim=*/0))
{
//Check for presence of kw SWATINIT
if (eclipseState.get3DProperties().hasDeckDoubleGridProperty("SWATINIT") && applySwatInit) {
const std::vector<double>& swatInitEcl = eclipseState.
get3DProperties().getDoubleGridProperty("SWATINIT").getData();
const int nc = grid.size(/*codim=*/0);
swatInit_.resize(nc);
const int* gc = Opm::UgGridHelpers::globalCell(grid);
for (int c = 0; c < nc; ++c) {
const int deckPos = (gc == NULL) ? c : gc[c];
swatInit_[c] = swatInitEcl[deckPos];
}
}
// Get the equilibration records.
const std::vector<Opm::EquilRecord> rec = getEquil(eclipseState);
const auto& tables = eclipseState.getTableManager();
// Create (inverse) region mapping.
const Opm::RegionMapping<> eqlmap(equilnum(eclipseState, grid));
const int invalidRegion = -1;
regionPvtIdx_.resize(rec.size(), invalidRegion);
setRegionPvtIdx(grid, eclipseState, eqlmap);
// Create Rs functions.
rsFunc_.reserve(rec.size());
if (FluidSystem::enableDissolvedGas()) {
for (size_t i = 0; i < rec.size(); ++i) {
if (eqlmap.cells(i).empty()) {
rsFunc_.push_back(std::shared_ptr<Miscibility::RsVD<FluidSystem>>());
continue;
}
const int pvtIdx = regionPvtIdx_[i];
if (!rec[i].liveOilInitConstantRs()) {
const Opm::TableContainer& rsvdTables = tables.getRsvdTables();
const Opm::TableContainer& pbvdTables = tables.getPbvdTables();
if (rsvdTables.size() > 0) {
const Opm::RsvdTable& rsvdTable = rsvdTables.getTable<Opm::RsvdTable>(i);
std::vector<double> depthColumn = rsvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> rsColumn = rsvdTable.getColumn("RS").vectorCopy();
rsFunc_.push_back(std::make_shared<Miscibility::RsVD<FluidSystem>>(pvtIdx,
depthColumn, rsColumn));
} else if (pbvdTables.size() > 0) {
const Opm::PbvdTable& pbvdTable = pbvdTables.getTable<Opm::PbvdTable>(i);
std::vector<double> depthColumn = pbvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> pbubColumn = pbvdTable.getColumn("PBUB").vectorCopy();
rsFunc_.push_back(std::make_shared<Miscibility::PBVD<FluidSystem>>(pvtIdx,
depthColumn, pbubColumn));
} else {
throw std::runtime_error("Cannot initialise: RSVD or PBVD table not available.");
}
}
else {
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
throw std::runtime_error("Cannot initialise: when no explicit RSVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
}
const double pContact = rec[i].datumDepthPressure();
const double TContact = 273.15 + 20; // standard temperature for now
rsFunc_.push_back(std::make_shared<Miscibility::RsSatAtContact<FluidSystem>>(pvtIdx, pContact, TContact));
}
}
}
else {
for (size_t i = 0; i < rec.size(); ++i) {
rsFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
rvFunc_.reserve(rec.size());
if (FluidSystem::enableVaporizedOil()) {
for (size_t i = 0; i < rec.size(); ++i) {
if (eqlmap.cells(i).empty()) {
rvFunc_.push_back(std::shared_ptr<Miscibility::RvVD<FluidSystem>>());
continue;
}
const int pvtIdx = regionPvtIdx_[i];
if (!rec[i].wetGasInitConstantRv()) {
const Opm::TableContainer& rvvdTables = tables.getRvvdTables();
const Opm::TableContainer& pdvdTables = tables.getPdvdTables();
if (rvvdTables.size() > 0) {
const Opm::RvvdTable& rvvdTable = rvvdTables.getTable<Opm::RvvdTable>(i);
std::vector<double> depthColumn = rvvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> rvColumn = rvvdTable.getColumn("RV").vectorCopy();
rvFunc_.push_back(std::make_shared<Miscibility::RvVD<FluidSystem>>(pvtIdx,
depthColumn, rvColumn));
} else if (pdvdTables.size() > 0) {
const Opm::PdvdTable& pdvdTable = pdvdTables.getTable<Opm::PdvdTable>(i);
std::vector<double> depthColumn = pdvdTable.getColumn("DEPTH").vectorCopy();
std::vector<double> pdewColumn = pdvdTable.getColumn("PDEW").vectorCopy();
rvFunc_.push_back(std::make_shared<Miscibility::PDVD<FluidSystem>>(pvtIdx,
depthColumn, pdewColumn));
} else {
throw std::runtime_error("Cannot initialise: RVVD or PDCD table not available.");
}
}
else {
if (rec[i].gasOilContactDepth() != rec[i].datumDepth()) {
throw std::runtime_error(
"Cannot initialise: when no explicit RVVD table is given, \n"
"datum depth must be at the gas-oil-contact. "
"In EQUIL region "+std::to_string(i + 1)+" (counting from 1), this does not hold.");
}
const double pContact = rec[i].datumDepthPressure() + rec[i].gasOilContactCapillaryPressure();
const double TContact = 273.15 + 20; // standard temperature for now
rvFunc_.push_back(std::make_shared<Miscibility::RvSatAtContact<FluidSystem>>(pvtIdx,pContact, TContact));
}
}
}
else {
for (size_t i = 0; i < rec.size(); ++i) {
rvFunc_.push_back(std::make_shared<Miscibility::NoMixing>());
}
}
// extract the initial temperature
updateInitialTemperature_(eclipseState);
// Compute pressures, saturations, rs and rv factors.
calcPressSatRsRv(eclipseState, eqlmap, rec, materialLawManager, grid, grav);
// Modify oil pressure in no-oil regions so that the pressures of present phases can
// be recovered from the oil pressure and capillary relations.
}
typedef std::vector<double> Vec;
typedef std::vector<Vec> PVec; // One per phase.
const Vec& temperature() const { return temperature_; }
const PVec& press() const { return pp_; }
const PVec& saturation() const { return sat_; }
const Vec& rs() const { return rs_; }
const Vec& rv() const { return rv_; }
private:
void updateInitialTemperature_(const Opm::EclipseState& eclState)
{
// Get the initial temperature data
const std::vector<double>& tempiData =
eclState.get3DProperties().getDoubleGridProperty("TEMPI").getData();
temperature_ = tempiData;
}
typedef EquilReg EqReg;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rsFunc_;
std::vector< std::shared_ptr<Miscibility::RsFunction> > rvFunc_;
std::vector<int> regionPvtIdx_;
Vec temperature_;
PVec pp_;
PVec sat_;
Vec rs_;
Vec rv_;
Vec swatInit_;
template<class RMap>
void setRegionPvtIdx(const Grid& grid, const Opm::EclipseState& eclState, const RMap& reg)
{
size_t numCompressed = grid.size(/*codim=*/0);
const auto* globalCell = Opm::UgGridHelpers::globalCell(grid);
std::vector<int> cellPvtRegionIdx(numCompressed);
//Get the PVTNUM data
const std::vector<int>& pvtnumData = eclState.get3DProperties().getIntGridProperty("PVTNUM").getData();
// Convert PVTNUM data into an array of indices for compressed cells. Remember
// that Eclipse uses Fortran-style indices which start at 1 instead of 0, so we
// need to subtract 1.
for (size_t cellIdx = 0; cellIdx < numCompressed; ++ cellIdx) {
size_t cartesianCellIdx = globalCell[cellIdx];
assert(cartesianCellIdx < pvtnumData.size());
size_t pvtRegionIdx = pvtnumData[cartesianCellIdx] - 1;
cellPvtRegionIdx[cellIdx] = pvtRegionIdx;
}
for (const auto& r : reg.activeRegions()) {
const auto& cells = reg.cells(r);
const int cell = *(cells.begin());
regionPvtIdx_[r] = cellPvtRegionIdx[cell];
}
}
template <class RMap, class MaterialLawManager>
void calcPressSatRsRv(const Opm::EclipseState& eclState OPM_UNUSED,
const RMap& reg,
const std::vector< Opm::EquilRecord >& rec,
MaterialLawManager& materialLawManager,
const Grid& grid,
const double grav)
{
for (const auto& r : reg.activeRegions()) {
const auto& cells = reg.cells(r);
if (cells.empty()) {
Opm::OpmLog::warning("Equilibration region " + std::to_string(r + 1)
+ " has no active cells");
continue;
}
const EqReg eqreg(rec[r], rsFunc_[r], rvFunc_[r], regionPvtIdx_[r]);
PVec pressures = phasePressures<FluidSystem>(grid, eqreg, cells, grav);
const PVec sat = phaseSaturations<FluidSystem>(grid, eqreg, cells, materialLawManager, swatInit_, pressures);
const int np = FluidSystem::numPhases;
for (int p = 0; p < np; ++p) {
copyFromRegion(pressures[p], cells, pp_[p]);
copyFromRegion(sat[p], cells, sat_[p]);
}
const bool oil = FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx);
const bool gas = FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx);
if (oil && gas) {
const int oilpos = FluidSystem::oilPhaseIdx;
const int gaspos = FluidSystem::gasPhaseIdx;
const Vec rsVals = computeRs(grid, cells, pressures[oilpos], temperature_, *(rsFunc_[r]), sat[gaspos]);
const Vec rvVals = computeRs(grid, cells, pressures[gaspos], temperature_, *(rvFunc_[r]), sat[oilpos]);
copyFromRegion(rsVals, cells, rs_);
copyFromRegion(rvVals, cells, rv_);
}
}
}
template <class CellRangeType>
void copyFromRegion(const Vec& source,
const CellRangeType& cells,
Vec& destination)
{
auto s = source.begin();
auto c = cells.begin();
const auto e = cells.end();
for (; c != e; ++c, ++s) {
destination[*c] =*s;
}
}
};
} // namespace DeckDependent
} // namespace EQUIL
} // namespace Opm
#endif // OPM_INITSTATEEQUIL_HEADER_INCLUDED