mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-11 00:41:56 -06:00
005bd49fb4
With zero threshold pressure and zero pressure difference, the existing code will set the pressure diff explicitly to zero. This will also set any derivatives to zero as well, which may disconnect the corresponding matrix rows.
592 lines
24 KiB
C++
592 lines
24 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \brief This file contains the flux module which is used for ECL problems
|
|
*
|
|
* This approach to fluxes is very specific to two-point flux approximation and applies
|
|
* what the Eclipse Technical Description calls the "NEWTRAN" transmissibility approach.
|
|
*/
|
|
#ifndef EWOMS_ECL_FLUX_MODULE_HH
|
|
#define EWOMS_ECL_FLUX_MODULE_HH
|
|
|
|
#include <opm/models/discretization/common/fvbaseproperties.hh>
|
|
#include <opm/models/blackoil/blackoilproperties.hh>
|
|
#include <opm/models/utils/signum.hh>
|
|
|
|
#include <opm/material/common/Valgrind.hpp>
|
|
#include <opm/common/OpmLog/OpmLog.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
|
|
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
#include <fmt/format.h>
|
|
|
|
#include <array>
|
|
|
|
namespace Opm {
|
|
|
|
template <class TypeTag>
|
|
class EclTransIntensiveQuantities;
|
|
|
|
template <class TypeTag>
|
|
class EclTransExtensiveQuantities;
|
|
|
|
template <class TypeTag>
|
|
class EclTransBaseProblem;
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
* \brief Specifies a flux module which uses ECL transmissibilities.
|
|
*/
|
|
template <class TypeTag>
|
|
struct EclTransFluxModule
|
|
{
|
|
using FluxIntensiveQuantities = EclTransIntensiveQuantities<TypeTag>;
|
|
using FluxExtensiveQuantities = EclTransExtensiveQuantities<TypeTag>;
|
|
using FluxBaseProblem = EclTransBaseProblem<TypeTag>;
|
|
|
|
/*!
|
|
* \brief Register all run-time parameters for the flux module.
|
|
*/
|
|
static void registerParameters()
|
|
{ }
|
|
};
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
* \brief Provides the defaults for the parameters required by the
|
|
* transmissibility based volume flux calculation.
|
|
*/
|
|
template <class TypeTag>
|
|
class EclTransBaseProblem
|
|
{ };
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
* \brief Provides the intensive quantities for the ECL flux module
|
|
*/
|
|
template <class TypeTag>
|
|
class EclTransIntensiveQuantities
|
|
{
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
protected:
|
|
void update_(const ElementContext&, unsigned, unsigned)
|
|
{ }
|
|
};
|
|
|
|
/*!
|
|
* \ingroup EclBlackOilSimulator
|
|
* \brief Provides the ECL flux module
|
|
*/
|
|
template <class TypeTag>
|
|
class EclTransExtensiveQuantities
|
|
{
|
|
using Implementation = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { numPhases = FluidSystem::numPhases };
|
|
enum { enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>() };
|
|
enum { enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>() };
|
|
enum { enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>() };
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
|
|
using EvalDimVector = Dune::FieldVector<Evaluation, dimWorld>;
|
|
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
|
|
|
|
public:
|
|
/*!
|
|
* \brief Return the intrinsic permeability tensor at a face [m^2]
|
|
*/
|
|
const DimMatrix& intrinsicPermeability() const
|
|
{
|
|
throw std::invalid_argument("The ECL transmissibility module does not provide an explicit intrinsic permeability");
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the pressure potential gradient of a fluid phase at the
|
|
* face's integration point [Pa/m]
|
|
*
|
|
* \param phaseIdx The index of the fluid phase
|
|
*/
|
|
const EvalDimVector& potentialGrad(unsigned) const
|
|
{
|
|
throw std::invalid_argument("The ECL transmissibility module does not provide explicit potential gradients");
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the gravity corrected pressure difference between the interior and
|
|
* the exterior of a face.
|
|
*
|
|
* \param phaseIdx The index of the fluid phase
|
|
*/
|
|
const Evaluation& pressureDifference(unsigned phaseIdx) const
|
|
{ return pressureDifference_[phaseIdx]; }
|
|
|
|
/*!
|
|
* \brief Return the filter velocity of a fluid phase at the face's integration point
|
|
* [m/s]
|
|
*
|
|
* \param phaseIdx The index of the fluid phase
|
|
*/
|
|
const EvalDimVector& filterVelocity(unsigned) const
|
|
{
|
|
throw std::invalid_argument("The ECL transmissibility module does not provide explicit filter velocities");
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the volume flux of a fluid phase at the face's integration point
|
|
* \f$[m^3/s / m^2]\f$
|
|
*
|
|
* This is the fluid volume of a phase per second and per square meter of face
|
|
* area.
|
|
*
|
|
* \param phaseIdx The index of the fluid phase
|
|
*/
|
|
const Evaluation& volumeFlux(unsigned phaseIdx) const
|
|
{ return volumeFlux_[phaseIdx]; }
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Returns the local index of the degree of freedom in which is
|
|
* in upstream direction.
|
|
*
|
|
* i.e., the DOF which exhibits a higher effective pressure for
|
|
* the given phase.
|
|
*/
|
|
unsigned upstreamIndex_(unsigned phaseIdx) const
|
|
{
|
|
assert(phaseIdx < numPhases);
|
|
|
|
return upIdx_[phaseIdx];
|
|
}
|
|
|
|
/*!
|
|
* \brief Returns the local index of the degree of freedom in which is
|
|
* in downstream direction.
|
|
*
|
|
* i.e., the DOF which exhibits a lower effective pressure for the
|
|
* given phase.
|
|
*/
|
|
unsigned downstreamIndex_(unsigned phaseIdx) const
|
|
{
|
|
assert(phaseIdx < numPhases);
|
|
|
|
return dnIdx_[phaseIdx];
|
|
}
|
|
|
|
void updateSolvent(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
|
{ asImp_().updateVolumeFluxTrans(elemCtx, scvfIdx, timeIdx); }
|
|
|
|
void updatePolymer(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
|
{ asImp_().updateShearMultipliers(elemCtx, scvfIdx, timeIdx); }
|
|
|
|
public:
|
|
|
|
static void volumeAndPhasePressureDifferences(std::array<short, numPhases>& upIdx,
|
|
std::array<short, numPhases>& dnIdx,
|
|
Evaluation (&volumeFlux)[numPhases],
|
|
Evaluation (&pressureDifferences)[numPhases],
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
const auto& problem = elemCtx.problem();
|
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
unsigned interiorDofIdx = scvf.interiorIndex();
|
|
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
|
|
|
assert(interiorDofIdx != exteriorDofIdx);
|
|
|
|
unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
|
|
unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
|
|
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
|
Scalar faceArea = scvf.area();
|
|
Scalar thpres = problem.thresholdPressure(I, J);
|
|
|
|
// estimate the gravity correction: for performance reasons we use a simplified
|
|
// approach for this flux module that assumes that gravity is constant and always
|
|
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
|
Scalar g = elemCtx.problem().gravity()[dimWorld - 1];
|
|
|
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
|
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
|
|
|
// this is quite hacky because the dune grid interface does not provide a
|
|
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
|
// solution would be to take the Z coordinate of the element centroids, but since
|
|
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
|
// here...
|
|
Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
|
Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
|
|
|
// the distances from the DOF's depths. (i.e., the additional depth of the
|
|
// exterior DOF)
|
|
Scalar distZ = zIn - zEx;
|
|
|
|
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
|
|
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
|
|
|
|
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
calculatePhasePressureDiff_(upIdx[phaseIdx],
|
|
dnIdx[phaseIdx],
|
|
pressureDifferences[phaseIdx],
|
|
intQuantsIn,
|
|
intQuantsEx,
|
|
phaseIdx,//input
|
|
interiorDofIdx,//input
|
|
exteriorDofIdx,//input
|
|
Vin,
|
|
Vex,
|
|
I,
|
|
J,
|
|
distZ*g,
|
|
thpres);
|
|
if (pressureDifferences[phaseIdx] == 0) {
|
|
volumeFlux[phaseIdx] = 0.0;
|
|
continue;
|
|
}
|
|
|
|
const bool upwindIsInterior = (static_cast<unsigned>(upIdx[phaseIdx]) == interiorDofIdx);
|
|
const IntensiveQuantities& up = upwindIsInterior ? intQuantsIn : intQuantsEx;
|
|
// TODO: should the rock compaction transmissibility multiplier be upstreamed
|
|
// or averaged? all fluids should see the same compaction?!
|
|
const Evaluation& transMult = up.rockCompTransMultiplier();
|
|
|
|
const auto& materialLawManager = problem.materialLawManager();
|
|
FaceDir::DirEnum facedir = FaceDir::DirEnum::Unknown;
|
|
if (materialLawManager->hasDirectionalRelperms()) {
|
|
facedir = scvf.faceDirFromDirId(); // direction (X, Y, or Z) of the face
|
|
}
|
|
if (upwindIsInterior)
|
|
volumeFlux[phaseIdx] =
|
|
pressureDifferences[phaseIdx]*up.mobility(phaseIdx, facedir)*transMult*(-trans/faceArea);
|
|
else
|
|
volumeFlux[phaseIdx] =
|
|
pressureDifferences[phaseIdx]*
|
|
(Toolbox::value(up.mobility(phaseIdx, facedir))*Toolbox::value(transMult)*(-trans/faceArea));
|
|
}
|
|
}
|
|
|
|
template<class EvalType>
|
|
static void calculatePhasePressureDiff_(short& upIdx,
|
|
short& dnIdx,
|
|
EvalType& pressureDifference,
|
|
const IntensiveQuantities& intQuantsIn,
|
|
const IntensiveQuantities& intQuantsEx,
|
|
const unsigned phaseIdx,
|
|
const unsigned interiorDofIdx,
|
|
const unsigned exteriorDofIdx,
|
|
const Scalar Vin,
|
|
const Scalar Vex,
|
|
const unsigned globalIndexIn,
|
|
const unsigned globalIndexEx,
|
|
const Scalar distZg,
|
|
const Scalar thpres
|
|
)
|
|
{
|
|
|
|
// check shortcut: if the mobility of the phase is zero in the interior as
|
|
// well as the exterior DOF, we can skip looking at the phase.
|
|
if (intQuantsIn.mobility(phaseIdx) <= 0.0 &&
|
|
intQuantsEx.mobility(phaseIdx) <= 0.0)
|
|
{
|
|
upIdx = interiorDofIdx;
|
|
dnIdx = exteriorDofIdx;
|
|
pressureDifference = 0.0;
|
|
return;
|
|
}
|
|
|
|
// do the gravity correction: compute the hydrostatic pressure for the
|
|
// external at the depth of the internal one
|
|
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
|
|
Scalar rhoEx = Toolbox::value(intQuantsEx.fluidState().density(phaseIdx));
|
|
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
|
|
|
|
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
|
|
Evaluation pressureExterior = Toolbox::value(intQuantsEx.fluidState().pressure(phaseIdx));
|
|
if (enableExtbo) // added stability; particulary useful for solvent migrating in pure water
|
|
// where the solvent fraction displays a 0/1 behaviour ...
|
|
pressureExterior += Toolbox::value(rhoAvg)*(distZg);
|
|
else
|
|
pressureExterior += rhoAvg*(distZg);
|
|
|
|
pressureDifference = pressureExterior - pressureInterior;
|
|
|
|
// decide the upstream index for the phase. for this we make sure that the
|
|
// degree of freedom which is regarded upstream if both pressures are equal
|
|
// is always the same: if the pressure is equal, the DOF with the lower
|
|
// global index is regarded to be the upstream one.
|
|
if (pressureDifference > 0.0) {
|
|
upIdx = exteriorDofIdx;
|
|
dnIdx = interiorDofIdx;
|
|
}
|
|
else if (pressureDifference < 0.0) {
|
|
upIdx = interiorDofIdx;
|
|
dnIdx = exteriorDofIdx;
|
|
}
|
|
else {
|
|
// if the pressure difference is zero, we chose the DOF which has the
|
|
// larger volume associated to it as upstream DOF
|
|
if (Vin > Vex) {
|
|
upIdx = interiorDofIdx;
|
|
dnIdx = exteriorDofIdx;
|
|
}
|
|
else if (Vin < Vex) {
|
|
upIdx = exteriorDofIdx;
|
|
dnIdx = interiorDofIdx;
|
|
}
|
|
else {
|
|
assert(Vin == Vex);
|
|
// if the volumes are also equal, we pick the DOF which exhibits the
|
|
// smaller global index
|
|
if (globalIndexIn < globalIndexEx) {
|
|
upIdx = interiorDofIdx;
|
|
dnIdx = exteriorDofIdx;
|
|
}
|
|
else {
|
|
upIdx = exteriorDofIdx;
|
|
dnIdx = interiorDofIdx;
|
|
}
|
|
}
|
|
}
|
|
|
|
// apply the threshold pressure for the intersection. note that the concept
|
|
// of threshold pressure is a quite big hack that only makes sense for ECL
|
|
// datasets. (and even there, its physical justification is quite
|
|
// questionable IMO.)
|
|
if (thpres > 0.0) {
|
|
if (std::abs(Toolbox::value(pressureDifference)) > thpres) {
|
|
if (pressureDifference < 0.0)
|
|
pressureDifference += thpres;
|
|
else
|
|
pressureDifference -= thpres;
|
|
}
|
|
else {
|
|
pressureDifference = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
/*!
|
|
* \brief Update the required gradients for interior faces
|
|
*/
|
|
void calculateGradients_(const ElementContext& elemCtx, unsigned scvfIdx, unsigned timeIdx)
|
|
{
|
|
Valgrind::SetUndefined(*this);
|
|
|
|
volumeAndPhasePressureDifferences(upIdx_ , dnIdx_, volumeFlux_, pressureDifference_, elemCtx, scvfIdx, timeIdx);
|
|
}
|
|
|
|
/*!
|
|
* \brief Update the required gradients for boundary faces
|
|
*/
|
|
template <class FluidState>
|
|
void calculateBoundaryGradients_(const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx,
|
|
const FluidState& exFluidState)
|
|
{
|
|
const auto& scvf = elemCtx.stencil(timeIdx).boundaryFace(scvfIdx);
|
|
const Scalar faceArea = scvf.area();
|
|
const Scalar zEx = scvf.integrationPos()[dimWorld - 1];
|
|
const auto& problem = elemCtx.problem();
|
|
const unsigned globalSpaceIdx = elemCtx.globalSpaceIndex(0, timeIdx);
|
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(0, timeIdx);
|
|
|
|
calculateBoundaryGradients_(problem,
|
|
globalSpaceIdx,
|
|
intQuantsIn,
|
|
scvfIdx,
|
|
faceArea,
|
|
zEx,
|
|
exFluidState,
|
|
upIdx_,
|
|
dnIdx_,
|
|
volumeFlux_,
|
|
pressureDifference_);
|
|
|
|
// Treating solvent here and not in the static method, since that would require more
|
|
// extensive refactoring. It means that the TpfaLinearizer will not support bcs for solvent until this is
|
|
// addressed.
|
|
if constexpr (enableSolvent) {
|
|
if (upIdx_[gasPhaseIdx] == 0) {
|
|
const Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, scvfIdx);
|
|
const Scalar transModified = trans * Toolbox::value(intQuantsIn.rockCompTransMultiplier());
|
|
const auto solventFlux = pressureDifference_[gasPhaseIdx] * intQuantsIn.mobility(gasPhaseIdx) * (-transModified/faceArea);
|
|
asImp_().setSolventVolumeFlux(solventFlux);
|
|
} else {
|
|
asImp_().setSolventVolumeFlux(0.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
/*!
|
|
* \brief Update the required gradients for boundary faces
|
|
*/
|
|
template <class Problem, class FluidState, class EvaluationContainer>
|
|
static void calculateBoundaryGradients_(const Problem& problem,
|
|
const unsigned globalSpaceIdx,
|
|
const IntensiveQuantities& intQuantsIn,
|
|
const unsigned bfIdx,
|
|
const double faceArea,
|
|
const double zEx,
|
|
const FluidState& exFluidState,
|
|
std::array<short, numPhases>& upIdx,
|
|
std::array<short, numPhases>& dnIdx,
|
|
EvaluationContainer& volumeFlux,
|
|
EvaluationContainer& pressureDifference)
|
|
{
|
|
|
|
bool enableBoundaryMassFlux = problem.nonTrivialBoundaryConditions();
|
|
if (!enableBoundaryMassFlux)
|
|
return;
|
|
|
|
Scalar trans = problem.transmissibilityBoundary(globalSpaceIdx, bfIdx);
|
|
|
|
// estimate the gravity correction: for performance reasons we use a simplified
|
|
// approach for this flux module that assumes that gravity is constant and always
|
|
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
|
Scalar g = problem.gravity()[dimWorld - 1];
|
|
|
|
// this is quite hacky because the dune grid interface does not provide a
|
|
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
|
// solution would be to take the Z coordinate of the element centroids, but since
|
|
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
|
// here...
|
|
Scalar zIn = problem.dofCenterDepth(globalSpaceIdx);
|
|
|
|
// the distances from the DOF's depths. (i.e., the additional depth of the
|
|
// exterior DOF)
|
|
Scalar distZ = zIn - zEx;
|
|
|
|
for (unsigned phaseIdx=0; phaseIdx < numPhases; phaseIdx++) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
|
|
// do the gravity correction: compute the hydrostatic pressure for the
|
|
// integration position
|
|
const Evaluation& rhoIn = intQuantsIn.fluidState().density(phaseIdx);
|
|
const auto& rhoEx = exFluidState.density(phaseIdx);
|
|
Evaluation rhoAvg = (rhoIn + rhoEx)/2;
|
|
|
|
const Evaluation& pressureInterior = intQuantsIn.fluidState().pressure(phaseIdx);
|
|
Evaluation pressureExterior = exFluidState.pressure(phaseIdx);
|
|
pressureExterior += rhoAvg*(distZ*g);
|
|
|
|
pressureDifference[phaseIdx] = pressureExterior - pressureInterior;
|
|
|
|
// decide the upstream index for the phase. for this we make sure that the
|
|
// degree of freedom which is regarded upstream if both pressures are equal
|
|
// is always the same: if the pressure is equal, the DOF with the lower
|
|
// global index is regarded to be the upstream one.
|
|
const unsigned interiorDofIdx = 0; // Valid only for cell-centered FV.
|
|
if (pressureDifference[phaseIdx] > 0.0) {
|
|
upIdx[phaseIdx] = -1;
|
|
dnIdx[phaseIdx] = interiorDofIdx;
|
|
}
|
|
else {
|
|
upIdx[phaseIdx] = interiorDofIdx;
|
|
dnIdx[phaseIdx] = -1;
|
|
}
|
|
|
|
Evaluation transModified = trans;
|
|
|
|
if (upIdx[phaseIdx] == interiorDofIdx) {
|
|
|
|
// this is slightly hacky because in the automatic differentiation case, it
|
|
// only works for the element centered finite volume method. for ebos this
|
|
// does not matter, though.
|
|
const auto& up = intQuantsIn;
|
|
|
|
// deal with water induced rock compaction
|
|
const Scalar transMult = Toolbox::value(up.rockCompTransMultiplier());
|
|
transModified *= transMult;
|
|
|
|
volumeFlux[phaseIdx] =
|
|
pressureDifference[phaseIdx]*up.mobility(phaseIdx)*(-transModified/faceArea);
|
|
}
|
|
else {
|
|
// compute the phase mobility using the material law parameters of the
|
|
// interior element. TODO: this could probably be done more efficiently
|
|
const auto& matParams = problem.materialLawParams(globalSpaceIdx);
|
|
std::array<typename FluidState::Scalar,numPhases> kr;
|
|
MaterialLaw::relativePermeabilities(kr, matParams, exFluidState);
|
|
|
|
const auto& mob = kr[phaseIdx]/exFluidState.viscosity(phaseIdx);
|
|
volumeFlux[phaseIdx] =
|
|
pressureDifference[phaseIdx]*mob*(-transModified/faceArea);
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
|
|
/*!
|
|
* \brief Update the volumetric fluxes for all fluid phases on the interior faces of the context
|
|
*/
|
|
void calculateFluxes_(const ElementContext&, unsigned, unsigned)
|
|
{ }
|
|
|
|
void calculateBoundaryFluxes_(const ElementContext&, unsigned, unsigned)
|
|
{}
|
|
|
|
private:
|
|
Implementation& asImp_()
|
|
{ return *static_cast<Implementation*>(this); }
|
|
|
|
const Implementation& asImp_() const
|
|
{ return *static_cast<const Implementation*>(this); }
|
|
|
|
// the volumetric flux of all phases [m^3/s]
|
|
Evaluation volumeFlux_[numPhases];
|
|
|
|
// the difference in effective pressure between the exterior and the interior degree
|
|
// of freedom [Pa]
|
|
Evaluation pressureDifference_[numPhases];
|
|
|
|
// the local indices of the interior and exterior degrees of freedom
|
|
std::array<short, numPhases> upIdx_;
|
|
std::array<short, numPhases> dnIdx_;
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|