opm-simulators/ebos/eclgenericoutputblackoilmodule.cc

1741 lines
80 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
#include <config.h>
#include <ebos/eclgenericoutputblackoilmodule.hh>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/material/fluidsystems/BlackOilDefaultIndexTraits.hpp>
#include <opm/output/data/Solution.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/SummaryState.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <cassert>
#include <fmt/format.h>
#include <initializer_list>
#include <iomanip>
#include <sstream>
#include <stdexcept>
namespace {
std::string EclString(Opm::Inplace::Phase phase) {
switch(phase) {
case Opm::Inplace::Phase::WATER: return "WIP";
case Opm::Inplace::Phase::OIL: return "OIP";
case Opm::Inplace::Phase::GAS: return "GIP";
case Opm::Inplace::Phase::OilInLiquidPhase: return "OIPL";
case Opm::Inplace::Phase::OilInGasPhase: return "OIPG";
case Opm::Inplace::Phase::GasInLiquidPhase: return "GIPL";
case Opm::Inplace::Phase::GasInGasPhase: return "GIPG";
case Opm::Inplace::Phase::PoreVolume: return "RPV";
case Opm::Inplace::Phase::WaterResVolume: return "WIPR";
case Opm::Inplace::Phase::OilResVolume: return "OIPR";
case Opm::Inplace::Phase::GasResVolume: return "GIPR";
case Opm::Inplace::Phase::SALT: return "SIP";
default: throw std::logic_error(fmt::format("Phase enum with integer value: {} not recognized", static_cast<int>(phase)));
}
}
}
namespace Opm {
template<class FluidSystem, class Scalar>
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
EclGenericOutputBlackoilModule(const EclipseState& eclState,
const Schedule& schedule,
const SummaryConfig& summaryConfig,
const SummaryState& summaryState,
bool enableEnergy,
bool enableTemperature,
bool enableSolvent,
bool enablePolymer,
bool enableFoam,
bool enableBrine,
bool enableSaltPrecipitation,
bool enableExtbo,
bool enableMICP)
: eclState_(eclState)
, schedule_(schedule)
, summaryConfig_(summaryConfig)
, summaryState_(summaryState)
, enableEnergy_(enableEnergy)
, enableTemperature_(enableTemperature)
, enableSolvent_(enableSolvent)
, enablePolymer_(enablePolymer)
, enableFoam_(enableFoam)
, enableBrine_(enableBrine)
, enableSaltPrecipitation_(enableSaltPrecipitation)
, enableExtbo_(enableExtbo)
, enableMICP_(enableMICP)
{
const auto& fp = eclState_.fieldProps();
this->regions_["FIPNUM"] = fp.get_int("FIPNUM");
for (const auto& region : summaryConfig_.fip_regions())
this->regions_[region] = fp.get_int(region);
this->RPRNodes_ = summaryConfig_.keywords("RPR*");
this->RPRPNodes_ = summaryConfig_.keywords("RPRP*");
for (const auto& phase : Inplace::phases()) {
std::string key_pattern = "R" + EclString(phase) + "*";
this->regionNodes_[phase] = summaryConfig_.keywords(key_pattern);
}
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputCumLog(size_t reportStepNum, const bool substep, bool forceDisableCumOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellCumDataType::numWCValues, 0.0);
StringBuffer tmp_names(WellCumDataType::numWCNames, "");
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
const auto& st = summaryState_;
for (const auto& gname: schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD"){
tmp_values[2] = st.get("FOPT", 0.0); //WellCumDataType::OilProd
tmp_values[3] = st.get("FWPT", 0.0); //WellCumDataType::WaterProd
tmp_values[4] = st.get("FGPT", 0.0); //WellCumDataType::GasProd
tmp_values[5] = st.get("FVPT", 0.0);//WellCumDataType::FluidResVolProd
tmp_values[6] = st.get("FOIT", 0.0); //WellCumDataType::OilInj
tmp_values[7] = st.get("FWIT", 0.0); //WellCumDataType::WaterInj
tmp_values[8] = st.get("FGIT", 0.0); //WellCumDataType::GasInj
tmp_values[9] = st.get("FVIT", 0.0);//WellCumDataType::FluidResVolInj
}
else {
tmp_values[2] = get("GOPT"); //WellCumDataType::OilProd
tmp_values[3] = get("GWPT"); //WellCumDataType::WaterProd
tmp_values[4] = get("GGPT"); //WellCumDataType::GasProd
tmp_values[5] = get("GVPT");//WellCumDataType::FluidResVolProd
tmp_values[6] = get("GOIT"); //WellCumDataType::OilInj
tmp_values[7] = get("GWIT"); //WellCumDataType::WaterInj
tmp_values[8] = get("GGIT"); //WellCumDataType::GasInj
tmp_values[9] = get("GVIT");//WellCumDataType::FluidResVolInj
}
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
}
for (const auto& wname : schedule_.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule_.getWell(wname, reportStepNum);
tmp_names[0] = wname; //WellCumDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
if (well.isInjector()) {
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = ::Opm::Well::InjectorCMode;
using WType = ::Opm::InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default:
{
return "";
}
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default:
{
return "";
}
}
};
tmp_names[1] = "INJ"; //WellCumDataType::WellType
const auto flowctl = fctl(ctlMode);
if (flowctl == "RATE") //WellCumDataType::WellCTRL
{
const auto flowtype = ftype(injType);
if(flowtype == "Oil"){ tmp_names[2] = "ORAT"; }
else if(flowtype == "Wat"){ tmp_names[2] = "WRAT"; }
else if(flowtype == "Gas"){ tmp_names[2] = "GRAT"; }
}
else
{
tmp_names[2] = flowctl;
}
}
else if (well.isProducer()) {
const auto& controls = well.productionControls(st);
using CMode = ::Opm::Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRAT";
case CMode::GRUP: return "GRUP";
default:
{
return "none";
}
}
};
tmp_names[1] = "PROD"; //WellProdDataType::CTRLMode
tmp_names[2] = fctl(controls.cmode); //WellProdDataType::CTRLMode
}
tmp_values[0] = well.getHeadI() + 1; //WellCumDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; //WellCumDataType::wellLocationj
tmp_values[2] = get("WOPT"); //WellCumDataType::OilProd
tmp_values[3] = get("WWPT"); //WellCumDataType::WaterProd
tmp_values[4] = get("WGPT"); //WellCumDataType::GasProd
tmp_values[5] = get("WVPT");//WellCumDataType::FluidResVolProd
tmp_values[6] = get("WOIT"); //WellCumDataType::OilInj
tmp_values[7] = get("WWIT"); //WellCumDataType::WaterInj
tmp_values[8] = get("WGIT"); //WellCumDataType::GasInj
tmp_values[9] = get("WVIT");//WellCumDataType::FluidResVolInj
outputCumulativeReport_(tmp_values, tmp_names, forceDisableCumOutput);
}
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputProdLog(size_t reportStepNum,
const bool substep,
bool forceDisableProdOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellProdDataType::numWPValues, 0.0);
StringBuffer tmp_names(WellProdDataType::numWPNames, "");
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
const auto& st = summaryState_;
for (const auto& gname: schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD"){
tmp_values[2] = st.get("FOPR", 0.0); //WellProdDataType::OilRate
tmp_values[3] = st.get("FWPR", 0.0); //WellProdDataType::WaterRate
tmp_values[4] = st.get("FGPR", 0.0); //WellProdDataType::GasRate
tmp_values[5] = st.get("FVPR", 0.0); //WellProdDataType::FluidResVol
tmp_values[6] = st.get("FWCT", 0.0); //WellProdDataType::WaterCut
tmp_values[7] = st.get("FGOR", 0.0); //WellProdDataType::GasOilRatio
} else {
tmp_values[2] = get("GOPR"); //WellProdDataType::OilRate
tmp_values[3] = get("GWPR"); //WellProdDataType::WaterRate
tmp_values[4] = get("GGPR"); //WellProdDataType::GasRate
tmp_values[5] = get("GVPR"); //WellProdDataType::FluidResVol
tmp_values[6] = get("GWCT"); //WellProdDataType::WaterCut
tmp_values[7] = get("GGOR"); //WellProdDataType::GasOilRatio
}
tmp_values[8] = tmp_values[3]/tmp_values[4]; //WellProdDataType::WaterGasRatio
if (isnan(tmp_values[8])){
tmp_values[8] = 0.0;
}
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
}
for (const auto& wname: schedule_.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule_.getWell(wname, reportStepNum);
// Ignore injector wells
if (well.isInjector()){
continue;
}
tmp_names[0] = wname;//WellProdDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.productionControls(st);
using CMode = Well::ProducerCMode;
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::ORAT: return "ORAT";
case CMode::WRAT: return "WRAT";
case CMode::GRAT: return "GRAT";
case CMode::LRAT: return "LRAT";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::CRAT: return "CRate";
case CMode::GRUP: return "GRUP";
default:
{
return "none";
}
}
};
tmp_names[1] = fctl(controls.cmode); //WellProdDataType::CTRLMode
tmp_values[0] = well.getHeadI() + 1;//WellProdDataType::WellLocationi
tmp_values[1] = well.getHeadJ() + 1;//WellProdDataType::WellLocationj
tmp_values[2] = get("WOPR"); //WellProdDataType::OilRate
tmp_values[3] = get("WWPR"); //WellProdDataType::WaterRate
tmp_values[4] = get("WGPR"); //WellProdDataType::GasRate
tmp_values[5] = get("WVPR"); //WellProdDataType::FluidResVol
tmp_values[6] = get("WWCT"); //WellProdDataType::WaterCut
tmp_values[7] = get("WGOR"); //WellProdDataType::GasOilRatio
tmp_values[9] = get("WBHP"); //WellProdDataType::BHP
tmp_values[10] = get("WTHP"); //WellProdDataType::THP
//tmp_values[11] = 0; //WellProdDataType::SteadyStatePI //
tmp_values[8] = tmp_values[3]/tmp_values[4]; //WellProdDataType::WaterGasRatio
if (isnan(tmp_values[8])){
tmp_values[8] = 0.0;
}
outputProductionReport_(tmp_values, tmp_names, forceDisableProdOutput);
}
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputInjLog(size_t reportStepNum, const bool substep, bool forceDisableInjOutput)
{
if (!substep) {
ScalarBuffer tmp_values(WellInjDataType::numWIValues, 0.0);
StringBuffer tmp_names(WellInjDataType::numWINames, "");
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
const auto& st = summaryState_;
for (const auto& gname: schedule_.groupNames()) {
auto gName = static_cast<std::string>(gname);
auto get = [&st, &gName](const std::string& vector)
{
const auto key = vector + ':' + gName;
return st.has(key) ? st.get(key) : 0.0;
};
tmp_names[0] = gname;
if (tmp_names[0] == "FIELD"){
tmp_values[2] = st.get("FOIR", 0.0);//WellInjDataType::OilRate
tmp_values[3] = st.get("FWIR", 0.0); //WellInjDataType::WaterRate
tmp_values[4] = st.get("FGIR", 0.0); //WellInjDataType::GasRate
tmp_values[5] = st.get("FVIR", 0.0);//WellInjDataType::FluidResVol
}
else {
tmp_values[2] = get("GOIR");//WellInjDataType::OilRate
tmp_values[3] = get("GWIR"); //WellInjDataType::WaterRate
tmp_values[4] = get("GGIR"); //WellInjDataType::GasRate
tmp_values[5] = get("GVIR");//WellInjDataType::FluidResVol
}
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
}
for (const auto& wname: schedule_.wellNames(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(wname)) {
continue;
}
const auto& well = schedule_.getWell(wname, reportStepNum);
// Ignore Producer wells
if (well.isProducer()){
continue;
}
tmp_names[0] = wname; //WellInjDataType::WellName
auto wName = static_cast<std::string>(wname);
auto get = [&st, &wName](const std::string& vector)
{
const auto key = vector + ':' + wName;
return st.has(key) ? st.get(key) : 0.0;
};
const auto& controls = well.injectionControls(st);
const auto ctlMode = controls.cmode;
const auto injType = controls.injector_type;
using CMode = Well::InjectorCMode;
using WType = InjectorType;
auto ftype = [](const auto wtype) -> std::string
{
switch (wtype) {
case WType::OIL: return "Oil";
case WType::WATER: return "Wat";
case WType::GAS: return "Gas";
case WType::MULTI: return "Multi";
default:
{
return "";
}
}
};
auto fctl = [](const auto wmctl) -> std::string
{
switch (wmctl) {
case CMode::RATE: return "RATE";
case CMode::RESV: return "RESV";
case CMode::THP: return "THP";
case CMode::BHP: return "BHP";
case CMode::GRUP: return "GRUP";
default:
{
return "";
}
}
};
const auto flowtype = ftype(injType);
const auto flowctl = fctl(ctlMode);
if(flowtype == "Oil") //WellInjDataType::CTRLModeOil
{
if (flowctl == "RATE"){ tmp_names[1] = "ORAT"; }
else { tmp_names[1] = flowctl; }
}
else if (flowtype == "Wat") //WellInjDataType::CTRLModeWat
{
if (flowctl == "RATE"){ tmp_names[3] = "WRAT"; }
else { tmp_names[2] = flowctl; }
}
else if (flowtype == "Gas") //WellInjDataType::CTRLModeGas
{
if (flowctl == "RATE"){ tmp_names[3] = "GRAT"; }
else { tmp_names[3] = flowctl; }
}
tmp_values[0] = well.getHeadI() + 1; //WellInjDataType::wellLocationi
tmp_values[1] = well.getHeadJ() + 1; //WellInjDataType::wellLocationj
tmp_values[2] = get("WOIR"); //WellInjDataType::OilRate
tmp_values[3] = get("WWIR"); //WellInjDataType::WaterRate
tmp_values[4] = get("WGIR"); //WellInjDataType::GasRate
tmp_values[5] = get("WVIR");//WellInjDataType::FluidResVol
tmp_values[6] = get("WBHP"); //WellInjDataType::BHP
tmp_values[7] = get("WTHP"); //WellInjDataType::THP
//tmp_values[8] = 0; //WellInjDataType::SteadyStateII
outputInjectionReport_(tmp_values, tmp_names, forceDisableInjOutput);
}
}
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Comm& comm)
{
auto inplace = this->accumulateRegionSums(comm);
if (comm.rank() != 0)
return inplace;
updateSummaryRegionValues(inplace,
miscSummaryData,
regionData);
if (!substep)
outputFipLogImpl(inplace);
return inplace;
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipresvLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Comm& comm)
{
auto inplace = this->accumulateRegionSums(comm);
if (comm.rank() != 0)
return inplace;
updateSummaryRegionValues(inplace,
miscSummaryData,
regionData);
if (!substep)
outputFipresvLogImpl(inplace);
return inplace;
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
addRftDataToWells(data::Wells& wellDatas, size_t reportStepNum)
{
const auto& rft_config = schedule_[reportStepNum].rft_config();
for (const auto& well: schedule_.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
//add data infrastructure for shut wells
if (!wellDatas.count(well.name())) {
data::Well wellData;
if (!rft_config.active())
continue;
wellData.connections.resize(well.getConnections().size());
size_t count = 0;
for (const auto& connection: well.getConnections()) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
auto& connectionData = wellData.connections[count];
connectionData.index = index;
count++;
}
wellDatas.emplace(std::make_pair(well.name(), wellData));
}
data::Well& wellData = wellDatas.at(well.name());
for (auto& connectionData: wellData.connections) {
const auto index = connectionData.index;
if (oilConnectionPressures_.count(index) > 0)
connectionData.cell_pressure = oilConnectionPressures_.at(index);
if (waterConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_water = waterConnectionSaturations_.at(index);
if (gasConnectionSaturations_.count(index) > 0)
connectionData.cell_saturation_gas = gasConnectionSaturations_.at(index);
}
}
oilConnectionPressures_.clear();
waterConnectionSaturations_.clear();
gasConnectionSaturations_.clear();
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
assignToSolution(data::Solution& sol)
{
using DataEntry = std::tuple<std::string,
UnitSystem::measure,
data::TargetType,
const std::vector<Scalar>&>;
auto doInsert = [&sol](const DataEntry& entry)
{
if (!std::get<3>(entry).empty())
sol.insert(std::get<0>(entry), std::get<1>(entry),
std::move(std::get<3>(entry)), std::get<2>(entry));
};
const std::vector<DataEntry> data = {
{"1OVERBG", UnitSystem::measure::gas_inverse_formation_volume_factor, data::TargetType::RESTART_AUXILIARY, invB_[gasPhaseIdx]},
{"1OVERBO", UnitSystem::measure::oil_inverse_formation_volume_factor, data::TargetType::RESTART_AUXILIARY, invB_[oilPhaseIdx]},
{"1OVERBW", UnitSystem::measure::water_inverse_formation_volume_factor, data::TargetType::RESTART_AUXILIARY, invB_[waterPhaseIdx]},
{"BIOFILM", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, cBiofilm_},
{"CALCITE", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, cCalcite_},
{"FOAM", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, cFoam_},
{"GASKR", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, relativePermeability_[gasPhaseIdx]},
{"GAS_DEN", UnitSystem::measure::density, data::TargetType::RESTART_AUXILIARY, density_[gasPhaseIdx]},
{"GAS_VISC", UnitSystem::measure::viscosity, data::TargetType::RESTART_AUXILIARY, viscosity_[gasPhaseIdx]},
{"KRNSW_GO", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, krnSwMdcGo_},
{"KRNSW_OW", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, krnSwMdcOw_},
{"MICROBES", UnitSystem::measure::density, data::TargetType::RESTART_SOLUTION, cMicrobes_},
{"OILKR", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, relativePermeability_[oilPhaseIdx]},
{"OIL_DEN", UnitSystem::measure::density, data::TargetType::RESTART_AUXILIARY, density_[oilPhaseIdx]},
{"OIL_VISC", UnitSystem::measure::viscosity, data::TargetType::RESTART_AUXILIARY, viscosity_[oilPhaseIdx]},
{"OXYGEN", UnitSystem::measure::density, data::TargetType::RESTART_SOLUTION, cOxygen_},
{"PBUB", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, bubblePointPressure_},
{"PCSWM_GO", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, pcSwMdcGo_},
{"PCSWM_OW", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, pcSwMdcOw_},
{"PDEW", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, dewPointPressure_},
{"POLYMER", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, cPolymer_},
{"PORV_RC", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, rockCompPorvMultiplier_},
{"PPCW", UnitSystem::measure::pressure, data::TargetType::RESTART_SOLUTION, ppcw_},
{"PRESROCC", UnitSystem::measure::pressure, data::TargetType::RESTART_SOLUTION, minimumOilPressure_},
{"PRESSURE", UnitSystem::measure::pressure, data::TargetType::RESTART_SOLUTION, oilPressure_},
{"PRES_OVB", UnitSystem::measure::pressure, data::TargetType::RESTART_SOLUTION, overburdenPressure_},
{"RS", UnitSystem::measure::gas_oil_ratio, data::TargetType::RESTART_SOLUTION, rs_},
{"RSSAT", UnitSystem::measure::gas_oil_ratio, data::TargetType::RESTART_AUXILIARY, gasDissolutionFactor_},
{"RV", UnitSystem::measure::oil_gas_ratio, data::TargetType::RESTART_SOLUTION, rv_},
{"RVSAT", UnitSystem::measure::oil_gas_ratio, data::TargetType::RESTART_AUXILIARY, oilVaporizationFactor_},
{"SALT", UnitSystem::measure::salinity, data::TargetType::RESTART_SOLUTION, cSalt_},
{"SALTP", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, pSalt_},
{"PERMFACT", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, permFact_},
{"SOMAX", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, soMax_},
{"SSOLVENT", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, sSol_},
{"SS_X", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, extboX_},
{"SS_Y", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, extboY_},
{"SS_Z", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, extboZ_},
{"STD_CO2", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, mFracCo2_},
{"STD_GAS", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, mFracGas_},
{"STD_OIL", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, mFracOil_},
{"SWMAX", UnitSystem::measure::identity, data::TargetType::RESTART_SOLUTION, swMax_},
{"UREA", UnitSystem::measure::density, data::TargetType::RESTART_SOLUTION, cUrea_},
{"TMULT_RC", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, rockCompTransMultiplier_},
{"WATKR", UnitSystem::measure::identity, data::TargetType::RESTART_AUXILIARY, relativePermeability_[waterPhaseIdx]},
{"WAT_DEN", UnitSystem::measure::density, data::TargetType::RESTART_AUXILIARY, density_[waterPhaseIdx]},
{"WAT_VISC", UnitSystem::measure::viscosity, data::TargetType::RESTART_AUXILIARY, viscosity_[gasPhaseIdx]}
};
for (const auto& entry : data)
doInsert(entry);
if (!temperature_.empty()) {
if (enableEnergy_)
sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_SOLUTION);
else {
// Flow allows for initializing of non-constant initial temperature.
// For output of this temperature for visualization and restart set --enable-opm-restart=true
assert(enableTemperature_);
sol.insert("TEMP", UnitSystem::measure::temperature, std::move(temperature_), data::TargetType::RESTART_AUXILIARY);
}
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && !saturation_[waterPhaseIdx].empty()) {
sol.insert("SWAT", UnitSystem::measure::identity, std::move(saturation_[waterPhaseIdx]), data::TargetType::RESTART_SOLUTION);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && !saturation_[gasPhaseIdx].empty()) {
sol.insert("SGAS", UnitSystem::measure::identity, std::move(saturation_[gasPhaseIdx]), data::TargetType::RESTART_SOLUTION);
}
// Fluid in place
for (const auto& phase : Inplace::phases()) {
if (outputFipRestart_ && !fip_[phase].empty()) {
sol.insert(EclString(phase),
UnitSystem::measure::volume,
fip_[phase],
data::TargetType::SUMMARY);
}
}
// tracers
if (!tracerConcentrations_.empty()) {
const auto& tracers = eclState_.tracer();
for (std::size_t tracerIdx = 0; tracerIdx < tracers.size(); tracerIdx++) {
const auto& tracer = tracers[tracerIdx];
sol.insert(tracer.fname(), UnitSystem::measure::identity, std::move(tracerConcentrations_[tracerIdx]), data::TargetType::RESTART_TRACER_SOLUTION);
}
// We need put tracerConcentrations into a valid state.
// Otherwise next time we end up here outside of a restart write we will
// move invalidated data above (as it was moved away before and never
// reallocated)
tracerConcentrations_.resize(0);
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
setRestart(const data::Solution& sol,
unsigned elemIdx,
unsigned globalDofIndex)
{
Scalar so = 1.0;
if (!saturation_[waterPhaseIdx].empty() && sol.has("SWAT")) {
saturation_[waterPhaseIdx][elemIdx] = sol.data("SWAT")[globalDofIndex];
so -= sol.data("SWAT")[globalDofIndex];
}
if (!saturation_[gasPhaseIdx].empty() && sol.has("SGAS")) {
saturation_[gasPhaseIdx][elemIdx] = sol.data("SGAS")[globalDofIndex];
so -= sol.data("SGAS")[globalDofIndex];
}
if (!sSol_.empty()) {
// keep the SSOL option for backward compatibility
// should be removed after 10.2018 release
if (sol.has("SSOL"))
sSol_[elemIdx] = sol.data("SSOL")[globalDofIndex];
else if (sol.has("SSOLVENT"))
sSol_[elemIdx] = sol.data("SSOLVENT")[globalDofIndex];
so -= sSol_[elemIdx];
}
assert(!saturation_[oilPhaseIdx].empty());
saturation_[oilPhaseIdx][elemIdx] = so;
if (!oilPressure_.empty() && sol.has("PRESSURE"))
oilPressure_[elemIdx] = sol.data("PRESSURE")[globalDofIndex];
if (!temperature_.empty() && sol.has("TEMP"))
temperature_[elemIdx] = sol.data("TEMP")[globalDofIndex];
if (!rs_.empty() && sol.has("RS"))
rs_[elemIdx] = sol.data("RS")[globalDofIndex];
if (!rv_.empty() && sol.has("RV"))
rv_[elemIdx] = sol.data("RV")[globalDofIndex];
if (!cPolymer_.empty() && sol.has("POLYMER"))
cPolymer_[elemIdx] = sol.data("POLYMER")[globalDofIndex];
if (!cFoam_.empty() && sol.has("FOAM"))
cFoam_[elemIdx] = sol.data("FOAM")[globalDofIndex];
if (!cSalt_.empty() && sol.has("SALT"))
cSalt_[elemIdx] = sol.data("SALT")[globalDofIndex];
if (!pSalt_.empty() && sol.has("SALTP"))
pSalt_[elemIdx] = sol.data("SALTP")[globalDofIndex];
if (!permFact_.empty() && sol.has("PERMFACT"))
permFact_[elemIdx] = sol.data("PERMFACT")[globalDofIndex];
if (!soMax_.empty() && sol.has("SOMAX"))
soMax_[elemIdx] = sol.data("SOMAX")[globalDofIndex];
if (!pcSwMdcOw_.empty() &&sol.has("PCSWM_OW"))
pcSwMdcOw_[elemIdx] = sol.data("PCSWM_OW")[globalDofIndex];
if (!krnSwMdcOw_.empty() && sol.has("KRNSW_OW"))
krnSwMdcOw_[elemIdx] = sol.data("KRNSW_OW")[globalDofIndex];
if (!pcSwMdcGo_.empty() && sol.has("PCSWM_GO"))
pcSwMdcGo_[elemIdx] = sol.data("PCSWM_GO")[globalDofIndex];
if (!krnSwMdcGo_.empty() && sol.has("KRNSW_GO"))
krnSwMdcGo_[elemIdx] = sol.data("KRNSW_GO")[globalDofIndex];
if (!ppcw_.empty() && sol.has("PPCW"))
ppcw_[elemIdx] = sol.data("PPCW")[globalDofIndex];
if (!cMicrobes_.empty() && sol.has("MICROBES"))
cMicrobes_[elemIdx] = sol.data("MICROBES")[globalDofIndex];
if (!cOxygen_.empty() && sol.has("OXYGEN"))
cOxygen_[elemIdx] = sol.data("OXYGEN")[globalDofIndex];
if (!cUrea_.empty() && sol.has("UREA"))
cUrea_[elemIdx] = sol.data("UREA")[globalDofIndex];
if (!cBiofilm_.empty() && sol.has("BIOFILM"))
cBiofilm_[elemIdx] = sol.data("BIOFILM")[globalDofIndex];
if (!cCalcite_.empty() && sol.has("CALCITE"))
cCalcite_[elemIdx] = sol.data("CALCITE")[globalDofIndex];
}
template<class FluidSystem,class Scalar>
typename EclGenericOutputBlackoilModule<FluidSystem,Scalar>::ScalarBuffer
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
regionSum(const ScalarBuffer& property,
const std::vector<int>& regionId,
size_t maxNumberOfRegions,
const Comm& comm)
{
ScalarBuffer totals(maxNumberOfRegions, 0.0);
if (property.empty())
return totals;
assert(regionId.size() == property.size());
for (size_t j = 0; j < regionId.size(); ++j) {
const int regionIdx = regionId[j] - 1;
// the cell is not attributed to any region. ignore it!
if (regionIdx < 0)
continue;
assert(regionIdx < static_cast<int>(maxNumberOfRegions));
totals[regionIdx] += property[j];
}
for (size_t i = 0; i < maxNumberOfRegions; ++i)
totals[i] = comm.sum(totals[i]);
return totals;
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
doAllocBuffers(unsigned bufferSize,
unsigned reportStepNum,
const bool substep,
const bool log,
const bool isRestart,
const bool vapparsActive,
const bool enableHysteresis,
unsigned numTracers)
{
// Only output RESTART_AUXILIARY asked for by the user.
std::map<std::string, int> rstKeywords = schedule_.rst_keywords(reportStepNum);
for (auto& [keyword, should_write] : rstKeywords) {
if (this->isOutputCreationDirective_(keyword)) {
// 'BASIC', 'FREQ' and similar. Don't attempt to create
// cell-based output for these keywords and don't warn about
// not being able to create such cell-based result vectors.
should_write = 0;
}
}
this->outputFipRestart_ = false;
this->computeFip_ = false;
// Fluid in place
for (const auto& phase : Inplace::phases()) {
if (!substep || summaryConfig_.require3DField(EclString(phase))) {
if (rstKeywords["FIP"] > 0) {
rstKeywords["FIP"] = 0;
this->outputFipRestart_ = true;
}
this->fip_[phase].resize(bufferSize, 0.0);
this->computeFip_ = true;
}
else {
this->fip_[phase].clear();
}
}
if (!substep ||
this->summaryConfig_.hasKeyword("FPR") ||
this->summaryConfig_.hasKeyword("FPRP") ||
!this->RPRNodes_.empty())
{
this->fip_[Inplace::Phase::PoreVolume].resize(bufferSize, 0.0);
this->dynamicPoreVolume_.resize(bufferSize, 0.0);
this->hydrocarbonPoreVolume_.resize(bufferSize, 0.0);
this->pressureTimesPoreVolume_.resize(bufferSize, 0.0);
this->pressureTimesHydrocarbonVolume_.resize(bufferSize, 0.0);
}
else {
this->dynamicPoreVolume_.clear();
this->hydrocarbonPoreVolume_.clear();
this->pressureTimesPoreVolume_.clear();
this->pressureTimesHydrocarbonVolume_.clear();
}
// Well RFT data
if (!substep) {
const auto& rft_config = schedule_[reportStepNum].rft_config();
for (const auto& well: schedule_.getWells(reportStepNum)) {
// don't bother with wells not on this process
if (isDefunctParallelWell(well.name())) {
continue;
}
if (!rft_config.active())
continue;
for (const auto& connection: well.getConnections()) {
const size_t i = size_t(connection.getI());
const size_t j = size_t(connection.getJ());
const size_t k = size_t(connection.getK());
const size_t index = eclState_.gridDims().getGlobalIndex(i, j, k);
if (FluidSystem::phaseIsActive(oilPhaseIdx))
oilConnectionPressures_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(waterPhaseIdx))
waterConnectionSaturations_.emplace(std::make_pair(index, 0.0));
if (FluidSystem::phaseIsActive(gasPhaseIdx))
gasConnectionSaturations_.emplace(std::make_pair(index, 0.0));
}
}
}
// field data should be allocated
// 1) when we want to restart
// 2) when it is ask for by the user via restartConfig
// 3) when it is not a substep
if (!isRestart && (!schedule_.write_rst_file(reportStepNum) || substep))
return;
// always output saturation of active phases
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
saturation_[phaseIdx].resize(bufferSize, 0.0);
}
// and oil pressure
oilPressure_.resize(bufferSize, 0.0);
rstKeywords["PRES"] = 0;
rstKeywords["PRESSURE"] = 0;
// allocate memory for temperature
if (enableEnergy_ || enableTemperature_) {
temperature_.resize(bufferSize, 0.0);
rstKeywords["TEMP"] = 0;
}
if (FluidSystem::phaseIsActive(oilPhaseIdx))
rstKeywords["SOIL"] = 0;
if (FluidSystem::phaseIsActive(gasPhaseIdx))
rstKeywords["SGAS"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx))
rstKeywords["SWAT"] = 0;
if (FluidSystem::enableDissolvedGas()) {
rs_.resize(bufferSize, 0.0);
rstKeywords["RS"] = 0;
}
if (FluidSystem::enableVaporizedOil()) {
rv_.resize(bufferSize, 0.0);
rstKeywords["RV"] = 0;
}
if (enableSolvent_)
sSol_.resize(bufferSize, 0.0);
if (enablePolymer_)
cPolymer_.resize(bufferSize, 0.0);
if (enableFoam_)
cFoam_.resize(bufferSize, 0.0);
if (enableBrine_)
cSalt_.resize(bufferSize, 0.0);
if (enableSaltPrecipitation_) {
pSalt_.resize(bufferSize, 0.0);
permFact_.resize(bufferSize, 0.0);
}
if (enableExtbo_) {
extboX_.resize(bufferSize, 0.0);
extboY_.resize(bufferSize, 0.0);
extboZ_.resize(bufferSize, 0.0);
mFracOil_.resize(bufferSize, 0.0);
mFracGas_.resize(bufferSize, 0.0);
mFracCo2_.resize(bufferSize, 0.0);
}
if (enableMICP_){
cMicrobes_.resize(bufferSize, 0.0);
cOxygen_.resize(bufferSize, 0.0);
cUrea_.resize(bufferSize, 0.0);
cBiofilm_.resize(bufferSize, 0.0);
cCalcite_.resize(bufferSize, 0.0);
}
if (vapparsActive)
soMax_.resize(bufferSize, 0.0);
if (enableHysteresis) {
pcSwMdcOw_.resize(bufferSize, 0.0);
krnSwMdcOw_.resize(bufferSize, 0.0);
pcSwMdcGo_.resize(bufferSize, 0.0);
krnSwMdcGo_.resize(bufferSize, 0.0);
}
if (eclState_.fieldProps().has_double("SWATINIT")) {
ppcw_.resize(bufferSize, 0.0);
rstKeywords["PPCW"] = 0;
}
if (FluidSystem::enableDissolvedGas() && rstKeywords["RSSAT"] > 0) {
rstKeywords["RSSAT"] = 0;
gasDissolutionFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::enableVaporizedOil() && rstKeywords["RVSAT"] > 0) {
rstKeywords["RVSAT"] = 0;
oilVaporizationFactor_.resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["BW"] > 0) {
rstKeywords["BW"] = 0;
invB_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["BO"] > 0) {
rstKeywords["BO"] = 0;
invB_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["BG"] > 0) {
rstKeywords["BG"] = 0;
invB_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["DEN"] > 0) {
rstKeywords["DEN"] = 0;
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++ phaseIdx) {
if (!FluidSystem::phaseIsActive(phaseIdx))
continue;
density_[phaseIdx].resize(bufferSize, 0.0);
}
}
const bool hasVWAT = (rstKeywords["VISC"] > 0) || (rstKeywords["VWAT"] > 0);
const bool hasVOIL = (rstKeywords["VISC"] > 0) || (rstKeywords["VOIL"] > 0);
const bool hasVGAS = (rstKeywords["VISC"] > 0) || (rstKeywords["VGAS"] > 0);
rstKeywords["VISC"] = 0;
if (FluidSystem::phaseIsActive(waterPhaseIdx) && hasVWAT) {
rstKeywords["VWAT"] = 0;
viscosity_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && hasVOIL > 0) {
rstKeywords["VOIL"] = 0;
viscosity_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && hasVGAS > 0) {
rstKeywords["VGAS"] = 0;
viscosity_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(waterPhaseIdx) && rstKeywords["KRW"] > 0) {
rstKeywords["KRW"] = 0;
relativePermeability_[waterPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(oilPhaseIdx) && rstKeywords["KRO"] > 0) {
rstKeywords["KRO"] = 0;
relativePermeability_[oilPhaseIdx].resize(bufferSize, 0.0);
}
if (FluidSystem::phaseIsActive(gasPhaseIdx) && rstKeywords["KRG"] > 0) {
rstKeywords["KRG"] = 0;
relativePermeability_[gasPhaseIdx].resize(bufferSize, 0.0);
}
if (rstKeywords["PBPD"] > 0) {
rstKeywords["PBPD"] = 0;
bubblePointPressure_.resize(bufferSize, 0.0);
dewPointPressure_.resize(bufferSize, 0.0);
}
// tracers
if (numTracers > 0) {
tracerConcentrations_.resize(numTracers);
for (unsigned tracerIdx = 0; tracerIdx < numTracers; ++tracerIdx)
{
tracerConcentrations_[tracerIdx].resize(bufferSize, 0.0);
}
}
// ROCKC
if (rstKeywords["ROCKC"] > 0) {
rstKeywords["ROCKC"] = 0;
rockCompPorvMultiplier_.resize(bufferSize, 0.0);
rockCompTransMultiplier_.resize(bufferSize, 0.0);
swMax_.resize(bufferSize, 0.0);
minimumOilPressure_.resize(bufferSize, 0.0);
overburdenPressure_.resize(bufferSize, 0.0);
}
//Warn for any unhandled keyword
if (log) {
for (auto& keyValue: rstKeywords) {
if (keyValue.second > 0) {
std::string logstring = "Keyword '";
logstring.append(keyValue.first);
logstring.append("' is unhandled for output to file.");
OpmLog::warning("Unhandled output keyword", logstring);
}
}
}
failedCellsPb_.clear();
failedCellsPd_.clear();
// Not supported in flow legacy
if (false)
saturatedOilFormationVolumeFactor_.resize(bufferSize, 0.0);
if (false)
oilSaturationPressure_.resize(bufferSize, 0.0);
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
fipUnitConvert_(std::unordered_map<Inplace::Phase, Scalar>& fip) const
{
const UnitSystem& units = eclState_.getUnits();
using M = UnitSystem::measure;
const auto unit_map = std::unordered_map<Inplace::Phase, M> {
{Inplace::Phase::WATER, M::liquid_surface_volume},
{Inplace::Phase::OIL, M::liquid_surface_volume},
{Inplace::Phase::OilInLiquidPhase, M::liquid_surface_volume},
{Inplace::Phase::OilInGasPhase, M::liquid_surface_volume},
{Inplace::Phase::GAS, M::gas_surface_volume},
{Inplace::Phase::GasInLiquidPhase, M::gas_surface_volume},
{Inplace::Phase::GasInGasPhase, M::gas_surface_volume},
{Inplace::Phase::PoreVolume, M::volume},
{Inplace::Phase::DynamicPoreVolume, M::volume},
{Inplace::Phase::WaterResVolume, M::volume},
{Inplace::Phase::OilResVolume, M::volume},
{Inplace::Phase::GasResVolume, M::volume},
{Inplace::Phase::SALT, M::mass},
};
for (auto& [phase, value] : fip) {
auto unitPos = unit_map.find(phase);
if (unitPos != unit_map.end()) {
value = units.from_si(unitPos->second, value);
}
}
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
pressureUnitConvert_(Scalar& pav) const
{
pav = this->eclState_.getUnits()
.from_si(UnitSystem::measure::pressure, pav);
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputRegionFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> oip,
std::unordered_map<Inplace::Phase, Scalar> cip,
const Scalar& pav, const int reg) const
{
if (forceDisableFipOutput_)
return;
// don't output FIPNUM report if the region has no porv.
if (! (cip[Inplace::Phase::PoreVolume] > Scalar{0}))
return;
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
ss << '\n';
if (reg == 0) {
ss << "Field total";
}
else {
ss << "FIPNUM report region " << reg;
}
ss << " pressure dependent pore volume = "
<< std::fixed << std::setprecision(0)
<< cip[Inplace::Phase::DynamicPoreVolume] << ' '
<< units.name(UnitSystem::measure::volume) << "\n\n";
if (reg == 0) {
ss << " ===================================================\n"
<< " : Field Totals :\n";
}
else {
ss << " ===================================================\n"
<< " : FIPNUM report region "
<< std::setw(2) << reg << " :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV =" << std::setw(14) << pav << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : PAV =" << std::setw(14) << pav << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[Inplace::Phase::PoreVolume] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
}
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
<< ":Currently in place :" << std::setw(14) << cip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::OilInGasPhase] << std::setw(14) << cip[Inplace::Phase::OIL] << ":"
<< std::setw(13) << cip[Inplace::Phase::WATER] << " :" << std::setw(14) << (cip[Inplace::Phase::GasInGasPhase]) << std::setw(14) << cip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << cip[Inplace::Phase::GAS] << ":\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
<< ":Originally in place :" << std::setw(14) << oip[Inplace::Phase::OilInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::OilInGasPhase] << std::setw(14) << oip[Inplace::Phase::OIL] << ":"
<< std::setw(13) << oip[Inplace::Phase::WATER] << " :" << std::setw(14) << oip[Inplace::Phase::GasInGasPhase] << std::setw(14) << oip[Inplace::Phase::GasInLiquidPhase] << std::setw(14) << oip[Inplace::Phase::GAS] << ":\n"
<< ":========================:==========================================:================:==========================================:\n";
OpmLog::note(ss.str());
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputResvFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> cipr, const int reg) const
{
if (forceDisableFipresvOutput_)
return;
// don't output FIPNUM report if the region has no porv.
if (cipr[Inplace::Phase::PoreVolume] == 0)
return;
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
if (reg == 0) {
ss << " ===================================\n";
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : RESERVOIR VOLUMES M3 :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : RESERVOIR VOLUMES RB :\n";
}
ss << ":---------:---------------:---------------:---------------:---------------:---------------:\n"
<< ": REGION : TOTAL PORE : PORE VOLUME : PORE VOLUME : PORE VOLUME : PORE VOLUME :\n"
<< ": : VOLUME : CONTAINING : CONTAINING : CONTAINING : CONTAINING :\n"
<< ": : : OIL : WATER : GAS : HYDRO-CARBON :\n"
<< ":---------:---------------:---------------:---------------:---------------:---------------\n";
}
else {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (9) << reg << ":" << std::setw(15) << cipr[Inplace::Phase::DynamicPoreVolume] << ":" << std::setw(15) << cipr[Inplace::Phase::OilResVolume] << ":" << std::setw(15) << cipr[Inplace::Phase::WaterResVolume] << ":" << std::setw(15) << cipr[Inplace::Phase::GasResVolume] << ":" << std::setw(15) << cipr[Inplace::Phase::OilResVolume] + cipr[Inplace::Phase::GasResVolume] << ":\n"
<< ":---------:---------------:---------------:---------------:---------------:---------------:\n";
}
OpmLog::note(ss.str());
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputProductionReport_(const ScalarBuffer& wellProd,
const StringBuffer& wellProdNames,
const bool forceDisableProdOutput)
{
if (forceDisableProdOutput)
return;
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
if (wellProdNames[WellProdDataType::WellName].empty()) {
ss << "======================================================= PRODUCTION REPORT =======================================================\n"//=================== \n"
<< ": WELL : LOCATION :CTRL: OIL : WATER : GAS : FLUID : WATER : GAS/OIL : WAT/GAS : BHP OR : THP OR :\n"// STEADY-ST PI :\n"
<< ": NAME : (I,J,K) :MODE: RATE : RATE : RATE : RES.VOL. : CUT : RATIO : RATIO : CON.PR.: BLK.PR.:\n";// OR POTN OF PREF. PH:\n";
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : SCM/SCM : SCM/SCM : SCM/SCM : BARSA : BARSA :\n";// :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : : MSCF/STB : STB/MSCF : PSIA : PSIA :\n";// :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : SCC/HR : SCC/HR : SCC/HR : RCC : SCC/SCC : SCC/SCC : SCC/SCC : ATMA : ATMA :\n";// :\n";
}
ss << "=================================================================================================================================\n";//=================== \n";
}
else {
if (wellProd[WellProdDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(11) << "" << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << "" << ":" << std::setw(8) << "" << ": \n";
}
else {
ss << std::right << std::fixed << ":" << std::setw (8) << wellProdNames[WellProdDataType::WellName] << ":" << std::setprecision(0) << std::setw(5) << wellProd[WellProdDataType::WellLocationi] << "," << std::setw(5) << wellProd[WellProdDataType::WellLocationj] << ":" << std::setw(4) << wellProdNames[WellProdDataType::CTRLMode] << ":" << std::setprecision(1) << std::setw(11) << wellProd[WellProdDataType::OilRate] << ":" << std::setw(11) << wellProd[WellProdDataType::WaterRate] << ":" << std::setw(11)<< wellProd[WellProdDataType::GasRate] << ":" << std::setw(11) << wellProd[WellProdDataType::FluidResVol] << std::setprecision(3) << ":" << std::setw(11) << wellProd[WellProdDataType::WaterCut] << std::setprecision(2) << ":" << std::setw(10) << wellProd[WellProdDataType::GasOilRatio] << std::setprecision(4) << ":" << std::setw(12) << wellProd[WellProdDataType::WatGasRatio] << std::setprecision(1) << ":" << std::setw(8) << wellProd[WellProdDataType::BHP] << ":" << std::setw(8) << wellProd[WellProdDataType::THP] << ": \n";
}
ss << ":"<< std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (5) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (12) << ":" << std::setfill ('-') << std::setw (11) << ":" << std::setfill ('-') << std::setw (13) << ":" << std::setfill ('-') << std::setw (9) << ":" << std::setfill ('-') << std::setw (9) << ":" << "\n";
}
OpmLog::note(ss.str());
}
template<class FluidSystem, class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputInjectionReport_(const ScalarBuffer& wellInj,
const StringBuffer& wellInjNames,
const bool forceDisableInjOutput)
{
if (forceDisableInjOutput)
return;
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
if (wellInjNames[WellInjDataType::WellName].empty()) {
ss << "=================================================== INJECTION REPORT ========================================\n"//===================== \n"
<< ": WELL : LOCATION : CTRL : CTRL : CTRL : OIL : WATER : GAS : FLUID : BHP OR : THP OR :\n"// STEADY-ST II :\n"
<< ": NAME : (I,J,K) : MODE : MODE : MODE : RATE : RATE : RATE : RES.VOL. : CON.PR.: BLK.PR.:\n";// OR POTENTIAL :\n";
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : OIL : WAT : GAS : SCM/DAY : SCM/DAY : SCM/DAY : RCM/DAY : BARSA : BARSA :\n";// :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : OIL : WAT : GAS : STB/DAY : STB/DAY : MSCF/DAY : RB/DAY : PSIA : PSIA :\n";// :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : OIL : WAT : GAS : SCC/HR : SCC/HR : SCC/HR : RCC/HR : ATMA : ATMA :\n";// :\n";
}
ss << "==============================================================================================================\n";//===================== \n";
}
else {
if (wellInj[WellInjDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< "" << ":" << std::setw(8)<< "" << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
}
else {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellInjNames[WellInjDataType::WellName] << ":" << std::setw(5) << wellInj[WellInjDataType::WellLocationi] << "," << std::setw(5) << wellInj[WellInjDataType::WellLocationj] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeOil] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeWat] << ":" << std::setw(6) << wellInjNames[WellInjDataType::CTRLModeGas] << ":" << std::setprecision(1) << std::setw(11) << wellInj[WellInjDataType::OilRate] << ":" << std::setw(11) << wellInj[WellInjDataType::WaterRate] << ":" << std::setw(11)<< wellInj[WellInjDataType::GasRate] << ":" << std::setw(11) << wellInj[WellInjDataType::FluidResVol] << ":" << std::setw(8)<< wellInj[WellInjDataType::BHP] << ":" << std::setw(8)<< wellInj[WellInjDataType::THP] << ": \n";//wellInj[WellInjDataType::SteadyStateII] << std::setw(10) << "\n"
}
ss << ":--------:-----------:------:------:------:------------:----------:-----------:-----------:--------:--------: \n";//--------------------:\n";
}
OpmLog::note(ss.str());
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputCumulativeReport_(const ScalarBuffer& wellCum,
const StringBuffer& wellCumNames,
const bool forceDisableCumOutput)
{
if (forceDisableCumOutput)
return;
const UnitSystem& units = eclState_.getUnits();
std::ostringstream ss;
if (wellCumNames[WellCumDataType::WellName].empty()) {
ss << "=================================================== CUMULATIVE PRODUCTION/INJECTION REPORT =========================================\n"
<< ": WELL : LOCATION : WELL :CTRL: OIL : WATER : GAS : Prod : OIL : WATER : GAS : INJ :\n"
<< ": NAME : (I,J,K) : TYPE :MODE: PROD : PROD : PROD : RES.VOL. : INJ : INJ : INJ : RES.VOL. :\n";
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << ": : : : : MSCM : MSCM : MMSCM : MRCM : MSCM : MSCM : MMSCM : MRCM :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << ": : : : : MSTB : MSTB : MMSCF : MRB : MSTB : MSTB : MMSCF : MRB :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_LAB) {
ss << ": : : : : MSCC : MSCC : MMSCC : MRCC : MSCC : MSCC : MMSCC : MRCC :\n";
}
ss << "====================================================================================================================================\n";
}
else {
if (wellCum[WellCumDataType::WellLocationi] < 1) {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(11) << "" << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
}
else {
ss << std::right << std::fixed << std::setprecision(0) << ":" << std::setw (8) << wellCumNames[WellCumDataType::WellName] << ":" << std::setw(5) << wellCum[WellCumDataType::WellLocationi] << "," << std::setw(5) << wellCum[WellCumDataType::WellLocationj] << ":" << std::setw(8) << wellCumNames[WellCumDataType::WellType] << ":" << std::setw(4) << wellCumNames[WellCumDataType::WellCTRL] << ":" << std::setprecision(1) << std::setw(11) << wellCum[WellCumDataType::OilProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterProd]/1000 << ":" << std::setw(11)<< wellCum[WellCumDataType::GasProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolProd]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::OilInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::WaterInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::GasInj]/1000 << ":" << std::setw(11) << wellCum[WellCumDataType::FluidResVolInj]/1000 << ": \n";
}
ss << ":--------:-----------:--------:----:------------:----------:-----------:-----------:------------:----------:-----------:-----------: \n";
}
OpmLog::note(ss.str());
}
template<class FluidSystem,class Scalar>
bool EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
isOutputCreationDirective_(const std::string& keyword)
{
return (keyword == "BASIC") || (keyword == "FREQ")
|| (keyword == "RESTART") // From RPTSCHED
|| (keyword == "SAVE") || (keyword == "SFREQ"); // Not really supported
}
template<class FluidSystem, class Scalar>
Scalar EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
pressureAverage_(const Scalar& pressurePvHydrocarbon,
const Scalar& pvHydrocarbon,
const Scalar& pressurePv,
const Scalar& pv,
const bool hydrocarbon)
{
if (hydrocarbon && (pvHydrocarbon > 1e-10))
return pressurePvHydrocarbon / pvHydrocarbon;
return pressurePv / pv;
}
template<class FluidSystem,class Scalar>
typename EclGenericOutputBlackoilModule<FluidSystem,Scalar>::ScalarBuffer
EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon,
const ScalarBuffer& pvHydrocarbon,
const ScalarBuffer& pressurePv,
const ScalarBuffer& pv,
const bool hydrocarbon)
{
const std::size_t size = pressurePvHydrocarbon.size();
assert(pvHydrocarbon.size() == size);
assert(pressurePv.size() == size);
assert(pv.size() == size);
ScalarBuffer fraction(size, 0.0);
for (std::size_t i = 0; i < size; ++i) {
fraction[i] = pressureAverage_(pressurePvHydrocarbon[i],
pvHydrocarbon[i],
pressurePv[i],
pv[i],
hydrocarbon);
}
return fraction;
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputErrorLog(const Comm& comm) const
{
const size_t maxNumCellsFaillog = 20;
int pbSize = failedCellsPb_.size(), pdSize = failedCellsPd_.size();
std::vector<int> displPb, displPd, recvLenPb, recvLenPd;
if (comm.rank() == 0) {
displPb.resize(comm.size()+1, 0);
displPd.resize(comm.size()+1, 0);
recvLenPb.resize(comm.size());
recvLenPd.resize(comm.size());
}
comm.gather(&pbSize, recvLenPb.data(), 1, 0);
comm.gather(&pdSize, recvLenPd.data(), 1, 0);
std::partial_sum(recvLenPb.begin(), recvLenPb.end(), displPb.begin()+1);
std::partial_sum(recvLenPd.begin(), recvLenPd.end(), displPd.begin()+1);
std::vector<int> globalFailedCellsPb, globalFailedCellsPd;
if (comm.rank() == 0) {
globalFailedCellsPb.resize(displPb.back());
globalFailedCellsPd.resize(displPd.back());
}
comm.gatherv(failedCellsPb_.data(), static_cast<int>(failedCellsPb_.size()),
globalFailedCellsPb.data(), recvLenPb.data(),
displPb.data(), 0);
comm.gatherv(failedCellsPd_.data(), static_cast<int>(failedCellsPd_.size()),
globalFailedCellsPd.data(), recvLenPd.data(),
displPd.data(), 0);
std::sort(globalFailedCellsPb.begin(), globalFailedCellsPb.end());
std::sort(globalFailedCellsPd.begin(), globalFailedCellsPd.end());
if (!globalFailedCellsPb.empty()) {
std::stringstream errlog;
errlog << "Finding the bubble point pressure failed for " << globalFailedCellsPb.size() << " cells [";
errlog << globalFailedCellsPb[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPb.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPb[i];
}
if (globalFailedCellsPb.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
OpmLog::warning("Bubble point numerical problem", errlog.str());
}
if (!globalFailedCellsPd.empty()) {
std::stringstream errlog;
errlog << "Finding the dew point pressure failed for " << globalFailedCellsPd.size() << " cells [";
errlog << globalFailedCellsPd[0];
const size_t maxElems = std::min(maxNumCellsFaillog, globalFailedCellsPd.size());
for (size_t i = 1; i < maxElems; ++i) {
errlog << ", " << globalFailedCellsPd[i];
}
if (globalFailedCellsPd.size() > maxNumCellsFaillog) {
errlog << ", ...";
}
errlog << "]";
OpmLog::warning("Dew point numerical problem", errlog.str());
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipLogImpl(const Inplace& inplace) const
{
{
Scalar fieldHydroCarbonPoreVolumeAveragedPressure = pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
inplace.get(Inplace::Phase::HydroCarbonPV),
inplace.get(Inplace::Phase::PressurePV),
inplace.get(Inplace::Phase::PoreVolume),
true);
std::unordered_map<Inplace::Phase, Scalar> initial_values;
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
initial_values[phase] = this->initialInplace_->get(phase);
current_values[phase] = inplace.get(phase);
}
current_values[Inplace::Phase::DynamicPoreVolume] =
inplace.get(Inplace::Phase::DynamicPoreVolume);
fipUnitConvert_(initial_values);
fipUnitConvert_(current_values);
pressureUnitConvert_(fieldHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(std::move(initial_values),
std::move(current_values),
fieldHydroCarbonPoreVolumeAveragedPressure);
}
for (size_t reg = 1; reg <= inplace.max_region("FIPNUM"); ++reg) {
std::unordered_map<Inplace::Phase, Scalar> initial_values;
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
initial_values[phase] = this->initialInplace_->get("FIPNUM", phase, reg);
current_values[phase] = inplace.get("FIPNUM", phase, reg);
}
current_values[Inplace::Phase::DynamicPoreVolume] =
inplace.get("FIPNUM", Inplace::Phase::DynamicPoreVolume, reg);
fipUnitConvert_(initial_values);
fipUnitConvert_(current_values);
Scalar regHydroCarbonPoreVolumeAveragedPressure
= pressureAverage_(inplace.get("FIPNUM", Inplace::Phase::PressureHydroCarbonPV, reg),
inplace.get("FIPNUM", Inplace::Phase::HydroCarbonPV, reg),
inplace.get("FIPNUM", Inplace::Phase::PressurePV, reg),
inplace.get("FIPNUM", Inplace::Phase::PoreVolume, reg),
true);
pressureUnitConvert_(regHydroCarbonPoreVolumeAveragedPressure);
outputRegionFluidInPlace_(std::move(initial_values),
std::move(current_values),
regHydroCarbonPoreVolumeAveragedPressure, reg);
}
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
outputFipresvLogImpl(const Inplace& inplace) const
{
{
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
current_values[phase] = inplace.get(phase);
}
fipUnitConvert_(current_values);
outputResvFluidInPlace_(current_values);
}
for (size_t reg = 1; reg <= inplace.max_region("FIPNUM"); ++reg) {
std::unordered_map<Inplace::Phase, Scalar> current_values;
for (const auto& phase : Inplace::phases()) {
current_values[phase] = inplace.get("FIPNUM", phase, reg);
}
current_values[Inplace::Phase::DynamicPoreVolume] =
inplace.get("FIPNUM", Inplace::Phase::DynamicPoreVolume, reg);
fipUnitConvert_(current_values);
outputResvFluidInPlace_(current_values, reg);
}
}
template<class FluidSystem,class Scalar>
int EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
regionMax(const std::vector<int>& region,
const Comm& comm)
{
const auto max_value = region.empty() ? 0 : *std::max_element(region.begin(), region.end());
return comm.max(max_value);
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
update(Inplace& inplace,
const std::string& region_name,
const Inplace::Phase phase,
const std::size_t ntFip,
const ScalarBuffer& values)
{
double sum = 0.0;
for (std::size_t region_number = 0; region_number < ntFip; ++region_number) {
const auto rval = static_cast<double>(values[region_number]);
inplace.add(region_name, phase, region_number + 1, rval);
sum += rval;
}
inplace.add(phase, sum);
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
makeRegionSum(Inplace& inplace,
const std::string& region_name,
const Comm& comm) const
{
const auto& region = this->regions_.at(region_name);
const std::size_t ntFip = this->regionMax(region, comm);
auto update_inplace =
[&inplace, &region, &region_name, &comm, ntFip, this]
(const Inplace::Phase phase,
const std::vector<Scalar>& value)
{
update(inplace, region_name, phase, ntFip,
this->regionSum(value, region, ntFip, comm));
};
update_inplace(Inplace::Phase::PressurePV,
this->pressureTimesPoreVolume_);
update_inplace(Inplace::Phase::HydroCarbonPV,
this->hydrocarbonPoreVolume_);
update_inplace(Inplace::Phase::PressureHydroCarbonPV,
this->pressureTimesHydrocarbonVolume_);
update_inplace(Inplace::Phase::DynamicPoreVolume,
this->dynamicPoreVolume_);
for (const auto& phase : Inplace::phases()) {
auto fipPos = this->fip_.find(phase);
if (fipPos != this->fip_.end()) {
update_inplace(phase, fipPos->second);
}
}
}
template<class FluidSystem,class Scalar>
Inplace EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
accumulateRegionSums(const Comm& comm)
{
Inplace inplace;
for (const auto& region : this->regions_) {
makeRegionSum(inplace, region.first, comm);
}
// The first time the outputFipLog function is run we store the inplace values in
// the initialInplace_ member. This has at least two problems:
//
// o We really want the *initial* value - now we get the value after
// the first timestep.
//
// o For restarted runs this is obviously wrong.
//
// Finally it is of course not desirable to mutate state in an output
// routine.
if (!this->initialInplace_.has_value())
this->initialInplace_ = inplace;
return inplace;
}
template<class FluidSystem,class Scalar>
Scalar EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
sum(const ScalarBuffer& v)
{
return std::accumulate(v.begin(), v.end(), Scalar{0});
}
template<class FluidSystem,class Scalar>
void EclGenericOutputBlackoilModule<FluidSystem,Scalar>::
updateSummaryRegionValues(const Inplace& inplace,
std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData) const
{
// The field summary vectors should only use the FIPNUM based region sum.
{
for (const auto& phase : Inplace::phases()) {
const std::string key = "F" + EclString(phase);
if (this->summaryConfig_.hasKeyword(key)) {
miscSummaryData[key] = inplace.get(phase);
}
}
if (this->summaryConfig_.hasKeyword("FOE") && this->initialInplace_) {
miscSummaryData["FOE"] = inplace.get(Inplace::Phase::OIL)
/ this->initialInplace_.value().get(Inplace::Phase::OIL);
}
if (this->summaryConfig_.hasKeyword("FPR")) {
miscSummaryData["FPR"] =
pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
inplace.get(Inplace::Phase::HydroCarbonPV),
inplace.get(Inplace::Phase::PressurePV),
inplace.get(Inplace::Phase::PoreVolume),
true);
}
if (this->summaryConfig_.hasKeyword("FPRP")) {
miscSummaryData["FPRP"] =
pressureAverage_(inplace.get(Inplace::Phase::PressureHydroCarbonPV),
inplace.get(Inplace::Phase::HydroCarbonPV),
inplace.get(Inplace::Phase::PressurePV),
inplace.get(Inplace::Phase::PoreVolume),
false);
}
}
// The region summary vectors should loop through the FIPxxx regions to
// support the RPR__xxx summary keywords.
{
auto get_vector = [&inplace]
(const auto& node_,
const Inplace::Phase phase_)
{
return inplace.get_vector(node_.fip_region(), phase_);
};
for (const auto& phase : Inplace::phases()) {
for (const auto& node : this->regionNodes_.at(phase))
regionData[node.keyword()] = get_vector(node, phase);
}
for (const auto& node : this->RPRNodes_) {
regionData[node.keyword()] =
pressureAverage_(get_vector(node, Inplace::Phase::PressureHydroCarbonPV),
get_vector(node, Inplace::Phase::HydroCarbonPV),
get_vector(node, Inplace::Phase::PressurePV),
get_vector(node, Inplace::Phase::PoreVolume),
true);
}
for (const auto& node : this->RPRPNodes_) {
regionData[node.keyword()] =
pressureAverage_(get_vector(node, Inplace::Phase::PressureHydroCarbonPV),
get_vector(node, Inplace::Phase::HydroCarbonPV),
get_vector(node, Inplace::Phase::PressurePV),
get_vector(node, Inplace::Phase::PoreVolume),
false);
}
}
}
template class EclGenericOutputBlackoilModule<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,double>;
} // namespace Opm