mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-13 01:41:55 -06:00
1864 lines
75 KiB
C++
1864 lines
75 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include <opm/autodiff/MSWellHelpers.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template <typename TypeTag>
|
|
MultisegmentWell<TypeTag>::
|
|
MultisegmentWell(const Well* well, const int time_step, const Wells* wells,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components)
|
|
: Base(well, time_step, wells, param, rate_converter, pvtRegionIdx, num_components)
|
|
, segment_perforations_(numberOfSegments())
|
|
, segment_inlets_(numberOfSegments())
|
|
, cell_perforation_depth_diffs_(number_of_perforations_, 0.0)
|
|
, cell_perforation_pressure_diffs_(number_of_perforations_, 0.0)
|
|
, perforation_segment_depth_diffs_(number_of_perforations_, 0.0)
|
|
, segment_comp_initial_(numberOfSegments(), std::vector<double>(num_components_, 0.0))
|
|
, segment_densities_(numberOfSegments(), 0.0)
|
|
, segment_viscosities_(numberOfSegments(), 0.0)
|
|
, segment_mass_rates_(numberOfSegments(), 0.0)
|
|
, segment_depth_diffs_(numberOfSegments(), 0.0)
|
|
{
|
|
// not handling solvent or polymer for now with multisegment well
|
|
if (has_solvent) {
|
|
OPM_THROW(std::runtime_error, "solvent is not supported by multisegment well yet");
|
|
}
|
|
|
|
if (has_polymer) {
|
|
OPM_THROW(std::runtime_error, "polymer is not supported by multisegment well yet");
|
|
}
|
|
// since we decide to use the WellSegments from the well parser. we can reuse a lot from it.
|
|
// for other facilities needed but not available from parser, we need to process them here
|
|
|
|
// initialize the segment_perforations_
|
|
const WellConnections& completion_set = well_ecl_->getConnections(current_step_);
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const Connection& connection = completion_set.get(perf);
|
|
const int segment_index = segmentNumberToIndex(connection.segment_number);
|
|
segment_perforations_[segment_index].push_back(perf);
|
|
}
|
|
|
|
// initialize the segment_inlets_
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
const Segment& segment = segmentSet()[seg];
|
|
const int segment_number = segment.segmentNumber();
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) {
|
|
const int segment_index = segmentNumberToIndex(segment_number);
|
|
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
|
|
segment_inlets_[outlet_segment_index].push_back(segment_index);
|
|
}
|
|
}
|
|
|
|
// callcuate the depth difference between perforations and their segments
|
|
perf_depth_.resize(number_of_perforations_, 0.);
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
const double segment_depth = segmentSet()[seg].depth();
|
|
for (const int perf : segment_perforations_[seg]) {
|
|
perf_depth_[perf] = completion_set.get(perf).center_depth;
|
|
perforation_segment_depth_diffs_[perf] = perf_depth_[perf] - segment_depth;
|
|
}
|
|
}
|
|
|
|
// calculating the depth difference between the segment and its oulet_segments
|
|
// for the top segment, we will make its zero unless we find other purpose to use this value
|
|
for (int seg = 1; seg < numberOfSegments(); ++seg) {
|
|
const double segment_depth = segmentSet()[seg].depth();
|
|
const int outlet_segment_number = segmentSet()[seg].outletSegment();
|
|
const Segment& outlet_segment = segmentSet()[segmentNumberToIndex(outlet_segment_number)];
|
|
const double outlet_depth = outlet_segment.depth();
|
|
segment_depth_diffs_[seg] = segment_depth - outlet_depth;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<double>& depth_arg,
|
|
const double gravity_arg,
|
|
const int num_cells)
|
|
{
|
|
Base::init(phase_usage_arg, depth_arg, gravity_arg, num_cells);
|
|
|
|
// TODO: for StandardWell, we need to update the perf depth here using depth_arg.
|
|
// for MultisegmentWell, it is much more complicated.
|
|
// It can be specified directly, it can be calculated from the segment depth,
|
|
// it can also use the cell center, which is the same for StandardWell.
|
|
// For the last case, should we update the depth with the depth_arg? For the
|
|
// future, it can be a source of wrong result with Multisegment well.
|
|
// An indicator from the opm-parser should indicate what kind of depth we should use here.
|
|
|
|
// \Note: we do not update the depth here. And it looks like for now, we only have the option to use
|
|
// specified perforation depth
|
|
initMatrixAndVectors(num_cells);
|
|
|
|
// calcuate the depth difference between the perforations and the perforated grid block
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
const int cell_idx = well_cells_[perf];
|
|
cell_perforation_depth_diffs_[perf] = depth_arg[cell_idx] - perf_depth_[perf];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initMatrixAndVectors(const int num_cells) const
|
|
{
|
|
duneB_.setBuildMode( OffDiagMatWell::row_wise );
|
|
duneC_.setBuildMode( OffDiagMatWell::row_wise );
|
|
duneD_.setBuildMode( DiagMatWell::row_wise );
|
|
|
|
// set the size and patterns for all the matrices and vectors
|
|
// [A C^T [x = [ res
|
|
// B D] x_well] res_well]
|
|
|
|
// calculatiing the NNZ for duneD_
|
|
// NNZ = number_of_segments + 2 * (number_of_inlets / number_of_outlets)
|
|
{
|
|
int nnz_d = numberOfSegments();
|
|
for (const std::vector<int>& inlets : segment_inlets_) {
|
|
nnz_d += 2 * inlets.size();
|
|
}
|
|
duneD_.setSize(numberOfSegments(), numberOfSegments(), nnz_d);
|
|
}
|
|
duneB_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
|
|
duneC_.setSize(numberOfSegments(), num_cells, number_of_perforations_);
|
|
|
|
// we need to add the off diagonal ones
|
|
for (auto row = duneD_.createbegin(), end = duneD_.createend(); row != end; ++row) {
|
|
// the number of the row corrspnds to the segment now
|
|
const int seg = row.index();
|
|
// adding the item related to outlet relation
|
|
const Segment& segment = segmentSet()[seg];
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) { // if there is a outlet_segment
|
|
const int outlet_segment_index = segmentNumberToIndex(outlet_segment_number);
|
|
row.insert(outlet_segment_index);
|
|
}
|
|
|
|
// Add nonzeros for diagonal
|
|
row.insert(seg);
|
|
|
|
// insert the item related to its inlets
|
|
for (const int& inlet : segment_inlets_[seg]) {
|
|
row.insert(inlet);
|
|
}
|
|
}
|
|
|
|
// make the C matrix
|
|
for (auto row = duneC_.createbegin(), end = duneC_.createend(); row != end; ++row) {
|
|
// the number of the row corresponds to the segment number now.
|
|
for (const int& perf : segment_perforations_[row.index()]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
// make the B^T matrix
|
|
for (auto row = duneB_.createbegin(), end = duneB_.createend(); row != end; ++row) {
|
|
// the number of the row corresponds to the segment number now.
|
|
for (const int& perf : segment_perforations_[row.index()]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
row.insert(cell_idx);
|
|
}
|
|
}
|
|
|
|
resWell_.resize( numberOfSegments() );
|
|
|
|
primary_variables_.resize(numberOfSegments());
|
|
primary_variables_evaluation_.resize(numberOfSegments());
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initPrimaryVariablesEvaluation() const
|
|
{
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
primary_variables_evaluation_[seg][eq_idx] = 0.0;
|
|
primary_variables_evaluation_[seg][eq_idx].setValue(primary_variables_[seg][eq_idx]);
|
|
primary_variables_evaluation_[seg][eq_idx].setDerivative(eq_idx + numEq, 1.0);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleWellEq(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells)
|
|
{
|
|
|
|
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
|
|
if (use_inner_iterations) {
|
|
iterateWellEquations(ebosSimulator, dt, well_state);
|
|
}
|
|
|
|
assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, only_wells);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellStateWithTarget(WellState& well_state) const
|
|
{
|
|
// Updating well state bas on well control
|
|
// Target values are used as initial conditions for BHP, THP, and SURFACE_RATE
|
|
const int current = well_state.currentControls()[index_of_well_];
|
|
const double target = well_controls_iget_target(well_controls_, current);
|
|
const double* distr = well_controls_iget_distr(well_controls_, current);
|
|
switch (well_controls_iget_type(well_controls_, current)) {
|
|
case BHP: {
|
|
well_state.bhp()[index_of_well_] = target;
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
well_state.segPress()[top_segment_index] = well_state.bhp()[index_of_well_];
|
|
// TODO: similar to the way below to handle THP
|
|
// we should not something related to thp here when there is thp constraint
|
|
break;
|
|
}
|
|
|
|
case THP: {
|
|
well_state.thp()[index_of_well_] = target;
|
|
|
|
/* const Opm::PhaseUsage& pu = phaseUsage();
|
|
std::vector<double> rates(3, 0.0);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
rates[ Water ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Water ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
rates[ Oil ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Oil ] ];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
rates[ Gas ] = well_state.wellRates()[index_of_well_ * number_of_phases_ + pu.phase_pos[ Gas ] ];
|
|
} */
|
|
|
|
// const int table_id = well_controls_iget_vfp(well_controls_, current);
|
|
// const double& thp = well_controls_iget_target(well_controls_, current);
|
|
// const double& alq = well_controls_iget_alq(well_controls_, current);
|
|
|
|
// TODO: implement calculateBhpFromThp function
|
|
// well_state.bhp()[index_of_well_] = calculateBhpFromThp(rates, current);
|
|
// also the top segment pressure
|
|
/* const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
well_state.segPress()[top_segment_index] = well_state.bhp()[index_of_well_]; */
|
|
break;
|
|
}
|
|
|
|
case RESERVOIR_RATE: // intentional fall-through
|
|
case SURFACE_RATE:
|
|
// for the update of the rates, after we update the well rates, we can try to scale
|
|
// the segment rates and perforation rates with the same factor
|
|
// or the other way, we can use the same approach like the initialization of the well state,
|
|
// we devide the well rates to update the perforation rates, then we update the segment rates based
|
|
// on the perforation rates.
|
|
// the second way is safer, since if the well control is changed, the first way will not guarantee the consistence
|
|
// of between the segment rates and peforation rates
|
|
|
|
// checking the number of the phases under control
|
|
int numPhasesWithTargetsUnderThisControl = 0;
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
numPhasesWithTargetsUnderThisControl += 1;
|
|
}
|
|
}
|
|
|
|
assert(numPhasesWithTargetsUnderThisControl > 0);
|
|
|
|
if (well_type_ == INJECTOR) {
|
|
// assign target value as initial guess for injectors
|
|
// only handles single phase control at the moment
|
|
assert(numPhasesWithTargetsUnderThisControl == 1);
|
|
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.) {
|
|
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target / distr[phase];
|
|
} else {
|
|
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = 0.;
|
|
}
|
|
}
|
|
|
|
initSegmentRatesWithWellRates(well_state);
|
|
|
|
} else if (well_type_ == PRODUCER) {
|
|
// update the rates of phases under control based on the target,
|
|
// and also update rates of phases not under control to keep the rate ratio,
|
|
// assuming the mobility ratio does not change for the production wells
|
|
double original_rates_under_phase_control = 0.0;
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
original_rates_under_phase_control += well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] * distr[phase];
|
|
}
|
|
}
|
|
|
|
if (original_rates_under_phase_control != 0.0 ) {
|
|
double scaling_factor = target / original_rates_under_phase_control;
|
|
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] *= scaling_factor;
|
|
|
|
// scaling the segment rates with the same way with well rates
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
well_state.segRates()[number_of_phases_ * (seg + top_segment_index) + phase] *= scaling_factor;
|
|
}
|
|
}
|
|
} else { // scaling factor is not well defined when original_rates_under_phase_control is zero
|
|
// separating targets equally between phases under control
|
|
const double target_rate_divided = target / numPhasesWithTargetsUnderThisControl;
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided / distr[phase];
|
|
} else {
|
|
// this only happens for SURFACE_RATE control
|
|
well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] = target_rate_divided;
|
|
}
|
|
}
|
|
initSegmentRatesWithWellRates(well_state);
|
|
}
|
|
}
|
|
|
|
break;
|
|
} // end of switch
|
|
|
|
updatePrimaryVariables(well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
initSegmentRatesWithWellRates(WellState& well_state) const
|
|
{
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
const double perf_phaserate = well_state.wellRates()[number_of_phases_ * index_of_well_ + phase] / number_of_perforations_;
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
well_state.perfPhaseRates()[number_of_phases_ * (first_perf_ + perf) + phase] = perf_phaserate;
|
|
}
|
|
}
|
|
|
|
const std::vector<double> perforation_rates(well_state.perfPhaseRates().begin() + number_of_phases_ * first_perf_,
|
|
well_state.perfPhaseRates().begin() +
|
|
number_of_phases_ * (first_perf_ + number_of_perforations_) );
|
|
std::vector<double> segment_rates;
|
|
WellState::calculateSegmentRates(segment_inlets_, segment_perforations_, perforation_rates, number_of_phases_,
|
|
0, segment_rates);
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
std::copy(segment_rates.begin(), segment_rates.end(),
|
|
well_state.segRates().begin() + number_of_phases_ * top_segment_index );
|
|
// we need to check the top segment rates should be same with the well rates
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::ConvergenceReport
|
|
MultisegmentWell<TypeTag>::
|
|
getWellConvergence(const std::vector<double>& B_avg) const
|
|
{
|
|
assert(int(B_avg.size()) == num_components_);
|
|
|
|
// checking if any residual is NaN or too large. The two large one is only handled for the well flux
|
|
std::vector<std::vector<double>> abs_residual(numberOfSegments(), std::vector<double>(numWellEq, 0.0));
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
abs_residual[seg][eq_idx] = std::abs(resWell_[seg][eq_idx]);
|
|
}
|
|
}
|
|
|
|
std::vector<double> maximum_residual(numWellEq, 0.0);
|
|
|
|
ConvergenceReport report;
|
|
// TODO: the following is a little complicated, maybe can be simplified in some way?
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
for (int eq_idx = 0; eq_idx < numWellEq; ++eq_idx) {
|
|
if (eq_idx < num_components_) { // phase or component mass equations
|
|
const double flux_residual = B_avg[eq_idx] * abs_residual[seg][eq_idx];
|
|
// TODO: the report can not handle the segment number yet.
|
|
if (std::isnan(flux_residual)) {
|
|
report.nan_residual_found = true;
|
|
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
|
|
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
|
report.nan_residual_wells.push_back(problem_well);
|
|
} else if (flux_residual > param_.max_residual_allowed_) {
|
|
report.too_large_residual_found = true;
|
|
const auto& compName = FluidSystem::componentName(Indices::activeToCanonicalComponentIndex(eq_idx));
|
|
const typename ConvergenceReport::ProblemWell problem_well = {name(), compName};
|
|
report.nan_residual_wells.push_back(problem_well);
|
|
} else { // it is a normal residual
|
|
if (flux_residual > maximum_residual[eq_idx]) {
|
|
maximum_residual[eq_idx] = flux_residual;
|
|
}
|
|
}
|
|
} else { // pressure equation
|
|
// TODO: we should distinguish the rate control equations, bhp control equations
|
|
// and the oridnary pressure equations
|
|
const double pressure_residal = abs_residual[seg][eq_idx];
|
|
const std::string eq_name("Pressure");
|
|
if (std::isnan(pressure_residal)) {
|
|
report.nan_residual_found = true;
|
|
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
|
|
report.nan_residual_wells.push_back(problem_well);
|
|
} else if (std::isinf(pressure_residal)) {
|
|
report.too_large_residual_found = true;
|
|
const typename ConvergenceReport::ProblemWell problem_well = {name(), eq_name};
|
|
report.nan_residual_wells.push_back(problem_well);
|
|
} else { // it is a normal residual
|
|
if (pressure_residal > maximum_residual[eq_idx]) {
|
|
maximum_residual[eq_idx] = pressure_residal;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( !(report.nan_residual_found || report.too_large_residual_found) ) { // no abnormal residual value found
|
|
// check convergence for flux residuals
|
|
for ( int comp_idx = 0; comp_idx < num_components_; ++comp_idx)
|
|
{
|
|
report.converged = report.converged && (maximum_residual[comp_idx] < param_.tolerance_wells_);
|
|
}
|
|
|
|
report.converged = report.converged && (maximum_residual[SPres] < param_.tolerance_pressure_ms_wells_);
|
|
} else { // abnormal values found and no need to check the convergence
|
|
report.converged = false;
|
|
}
|
|
|
|
return report;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
apply(const BVector& x, BVector& Ax) const
|
|
{
|
|
BVectorWell Bx(duneB_.N());
|
|
|
|
duneB_.mv(x, Bx);
|
|
|
|
// invDBx = duneD^-1 * Bx_
|
|
const BVectorWell invDBx = mswellhelpers::invDXDirect(duneD_, Bx);
|
|
|
|
// Ax = Ax - duneC_^T * invDBx
|
|
duneC_.mmtv(invDBx,Ax);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
apply(BVector& r) const
|
|
{
|
|
// invDrw_ = duneD^-1 * resWell_
|
|
const BVectorWell invDrw = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
// r = r - duneC_^T * invDrw
|
|
duneC_.mmtv(invDrw, r);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
recoverWellSolutionAndUpdateWellState(const BVector& x,
|
|
WellState& well_state) const
|
|
{
|
|
BVectorWell xw(1);
|
|
recoverSolutionWell(x, xw);
|
|
updateWellState(xw, false, well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeWellPotentials(const Simulator& /* ebosSimulator */,
|
|
const WellState& /* well_state */,
|
|
std::vector<double>& /* well_potentials */)
|
|
{
|
|
OPM_THROW(std::runtime_error, "well potential calculation for multisegment wells is not supported yet");
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updatePrimaryVariables(const WellState& well_state) const
|
|
{
|
|
// TODO: to test using rate conversion coefficients to see if it will be better than
|
|
// this default one
|
|
|
|
// the index of the top segment in the WellState
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
const std::vector<double>& segment_rates = well_state.segRates();
|
|
const PhaseUsage& pu = phaseUsage();
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// calculate the total rate for each segment
|
|
double total_seg_rate = 0.0;
|
|
const int seg_index = top_segment_index + seg;
|
|
// the segment pressure
|
|
primary_variables_[seg][SPres] = well_state.segPress()[seg_index];
|
|
// TODO: under what kind of circustances, the following will be wrong?
|
|
// the definition of g makes the gas phase is always the last phase
|
|
for (int p = 0; p < number_of_phases_; p++) {
|
|
total_seg_rate += scalingFactor(p) * segment_rates[number_of_phases_ * seg_index + p];
|
|
}
|
|
|
|
primary_variables_[seg][GTotal] = total_seg_rate;
|
|
if (std::abs(total_seg_rate) > 0.) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
primary_variables_[seg][WFrac] = scalingFactor(water_pos) * segment_rates[number_of_phases_ * seg_index + water_pos] / total_seg_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
primary_variables_[seg][GFrac] = scalingFactor(gas_pos) * segment_rates[number_of_phases_ * seg_index + gas_pos] / total_seg_rate;
|
|
}
|
|
} else { // total_seg_rate == 0
|
|
if (well_type_ == INJECTOR) {
|
|
// only single phase injection handled
|
|
const double* distr = well_controls_get_current_distr(well_controls_);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
if (distr[pu.phase_pos[Water]] > 0.0) {
|
|
primary_variables_[seg][WFrac] = 1.0;
|
|
} else {
|
|
primary_variables_[seg][WFrac] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
if (distr[pu.phase_pos[Gas]] > 0.0) {
|
|
primary_variables_[seg][GFrac] = 1.0;
|
|
} else {
|
|
primary_variables_[seg][GFrac] = 0.0;
|
|
}
|
|
}
|
|
} else if (well_type_ == PRODUCER) { // producers
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
primary_variables_[seg][WFrac] = 1.0 / number_of_phases_;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
primary_variables_[seg][GFrac] = 1.0 / number_of_phases_;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
recoverSolutionWell(const BVector& x, BVectorWell& xw) const
|
|
{
|
|
BVectorWell resWell = resWell_;
|
|
// resWell = resWell - B * x
|
|
duneB_.mmv(x, resWell);
|
|
// xw = D^-1 * resWell
|
|
xw = mswellhelpers::invDXDirect(duneD_, resWell);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
solveEqAndUpdateWellState(WellState& well_state)
|
|
{
|
|
// We assemble the well equations, then we check the convergence,
|
|
// which is why we do not put the assembleWellEq here.
|
|
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
|
|
updateWellState(dx_well, false, well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computePerfCellPressDiffs(const Simulator& ebosSimulator)
|
|
{
|
|
for (int perf = 0; perf < number_of_perforations_; ++perf) {
|
|
|
|
std::vector<double> kr(number_of_phases_, 0.0);
|
|
std::vector<double> density(number_of_phases_, 0.0);
|
|
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
const auto& fs = intQuants.fluidState();
|
|
|
|
double sum_kr = 0.;
|
|
|
|
const PhaseUsage& pu = phaseUsage();
|
|
if (pu.phase_used[Water]) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
kr[water_pos] = intQuants.relativePermeability(FluidSystem::waterPhaseIdx).value();
|
|
sum_kr += kr[water_pos];
|
|
density[water_pos] = fs.density(FluidSystem::waterPhaseIdx).value();
|
|
}
|
|
|
|
if (pu.phase_used[Oil]) {
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
kr[oil_pos] = intQuants.relativePermeability(FluidSystem::oilPhaseIdx).value();
|
|
sum_kr += kr[oil_pos];
|
|
density[oil_pos] = fs.density(FluidSystem::oilPhaseIdx).value();
|
|
}
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
kr[gas_pos] = intQuants.relativePermeability(FluidSystem::gasPhaseIdx).value();
|
|
sum_kr += kr[gas_pos];
|
|
density[gas_pos] = fs.density(FluidSystem::gasPhaseIdx).value();
|
|
}
|
|
|
|
assert(sum_kr != 0.);
|
|
|
|
// calculate the average density
|
|
double average_density = 0.;
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
average_density += kr[p] * density[p];
|
|
}
|
|
average_density /= sum_kr;
|
|
|
|
cell_perforation_pressure_diffs_[perf] = gravity_ * average_density * cell_perforation_depth_diffs_[perf];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeInitialComposition()
|
|
{
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// TODO: probably it should be numWellEq -1 more accurately,
|
|
// while by meaning it should be num_comp
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
segment_comp_initial_[seg][comp_idx] = surfaceVolumeFraction(seg, comp_idx).value();
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellState(const BVectorWell& dwells,
|
|
const bool inner_iteration,
|
|
WellState& well_state) const
|
|
{
|
|
const bool use_inner_iterations = param_.use_inner_iterations_ms_wells_;
|
|
|
|
const double relaxation_factor = (use_inner_iterations && inner_iteration) ? 0.2 : 1.0;
|
|
|
|
const double dFLimit = param_.dwell_fraction_max_;
|
|
const double max_pressure_change = param_.max_pressure_change_ms_wells_;
|
|
const std::vector<std::array<double, numWellEq> > old_primary_variables = primary_variables_;
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int sign = dwells[seg][WFrac] > 0. ? 1 : -1;
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][WFrac]), relaxation_factor * dFLimit);
|
|
primary_variables_[seg][WFrac] = old_primary_variables[seg][WFrac] - dx_limited;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int sign = dwells[seg][GFrac] > 0. ? 1 : -1;
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][GFrac]), relaxation_factor * dFLimit);
|
|
primary_variables_[seg][GFrac] = old_primary_variables[seg][GFrac] - dx_limited;
|
|
}
|
|
|
|
// handling the overshooting or undershooting of the fractions
|
|
processFractions(seg);
|
|
|
|
// update the segment pressure
|
|
{
|
|
const int sign = dwells[seg][SPres] > 0.? 1 : -1;
|
|
const double dx_limited = sign * std::min(std::abs(dwells[seg][SPres]), relaxation_factor * max_pressure_change);
|
|
primary_variables_[seg][SPres] = old_primary_variables[seg][SPres] - dx_limited;
|
|
}
|
|
|
|
// update the total rate // TODO: should we have a limitation of the total rate change?
|
|
{
|
|
primary_variables_[seg][GTotal] = old_primary_variables[seg][GTotal] - relaxation_factor * dwells[seg][GTotal];
|
|
}
|
|
|
|
}
|
|
|
|
updateWellStateFromPrimaryVariables(well_state);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
calculateExplicitQuantities(const Simulator& ebosSimulator,
|
|
const WellState& /* well_state */)
|
|
{
|
|
computePerfCellPressDiffs(ebosSimulator);
|
|
computeInitialComposition();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
const WellSegments&
|
|
MultisegmentWell<TypeTag>::
|
|
segmentSet() const
|
|
{
|
|
return well_ecl_->getWellSegments(current_step_);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
numberOfSegments() const
|
|
{
|
|
return segmentSet().size();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
numberOfPerforations() const
|
|
{
|
|
return segmentSet().number_of_perforations_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
WellSegment::CompPressureDropEnum
|
|
MultisegmentWell<TypeTag>::
|
|
compPressureDrop() const
|
|
{
|
|
return segmentSet().compPressureDrop();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
WellSegment::MultiPhaseModelEnum
|
|
MultisegmentWell<TypeTag>::
|
|
multiphaseModel() const
|
|
{
|
|
return segmentSet().multiPhaseModel();
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
int
|
|
MultisegmentWell<TypeTag>::
|
|
segmentNumberToIndex(const int segment_number) const
|
|
{
|
|
return segmentSet().segmentNumberToIndex(segment_number);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
volumeFraction(const int seg, const unsigned compIdx) const
|
|
{
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx)) {
|
|
return primary_variables_evaluation_[seg][WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) && compIdx == Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx)) {
|
|
return primary_variables_evaluation_[seg][GFrac];
|
|
}
|
|
|
|
// Oil fraction
|
|
EvalWell oil_fraction = 1.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][WFrac];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][GFrac];
|
|
}
|
|
/* if (has_solvent) {
|
|
oil_fraction -= primary_variables_evaluation_[seg][SFrac];
|
|
} */
|
|
return oil_fraction;
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
volumeFractionScaled(const int seg, const int comp_idx) const
|
|
{
|
|
// For reservoir rate control, the distr in well control is used for the
|
|
// rate conversion coefficients. For the injection well, only the distr of the injection
|
|
// phase is not zero.
|
|
const double scale = scalingFactor(ebosCompIdxToFlowCompIdx(comp_idx));
|
|
if (scale > 0.) {
|
|
return volumeFraction(seg, comp_idx) / scale;
|
|
}
|
|
|
|
return volumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
surfaceVolumeFraction(const int seg, const int comp_idx) const
|
|
{
|
|
EvalWell sum_volume_fraction_scaled = 0.;
|
|
for (int idx = 0; idx < num_components_; ++idx) {
|
|
sum_volume_fraction_scaled += volumeFractionScaled(seg, idx);
|
|
}
|
|
|
|
assert(sum_volume_fraction_scaled.value() != 0.);
|
|
|
|
return volumeFractionScaled(seg, comp_idx) / sum_volume_fraction_scaled;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computePerfRate(const IntensiveQuantities& int_quants,
|
|
const std::vector<EvalWell>& mob_perfcells,
|
|
const int seg,
|
|
const int perf,
|
|
const EvalWell& segment_pressure,
|
|
const bool& allow_cf,
|
|
std::vector<EvalWell>& cq_s) const
|
|
{
|
|
std::vector<EvalWell> cmix_s(num_components_, 0.0);
|
|
|
|
// the composition of the components inside wellbore
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
cmix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
const auto& fs = int_quants.fluidState();
|
|
|
|
const EvalWell pressure_cell = extendEval(fs.pressure(FluidSystem::oilPhaseIdx));
|
|
const EvalWell rs = extendEval(fs.Rs());
|
|
const EvalWell rv = extendEval(fs.Rv());
|
|
|
|
// not using number_of_phases_ because of solvent
|
|
std::vector<EvalWell> b_perfcells(num_components_, 0.0);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
b_perfcells[compIdx] = extendEval(fs.invB(phaseIdx));
|
|
}
|
|
|
|
// pressure difference between the segment and the perforation
|
|
const EvalWell perf_seg_press_diff = gravity_ * segment_densities_[seg] * perforation_segment_depth_diffs_[perf];
|
|
// pressure difference between the perforation and the grid cell
|
|
const double cell_perf_press_diff = cell_perforation_pressure_diffs_[perf];
|
|
|
|
// Pressure drawdown (also used to determine direction of flow)
|
|
// TODO: not 100% sure about the sign of the seg_perf_press_diff
|
|
const EvalWell drawdown = (pressure_cell + cell_perf_press_diff) - (segment_pressure + perf_seg_press_diff);
|
|
|
|
// producing perforations
|
|
if ( drawdown > 0.0) {
|
|
// Do nothing is crossflow is not allowed
|
|
if (!allow_cf && well_type_ == INJECTOR) {
|
|
return;
|
|
}
|
|
|
|
// compute component volumetric rates at standard conditions
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell cq_p = - well_index_[perf] * (mob_perfcells[comp_idx] * drawdown);
|
|
cq_s[comp_idx] = b_perfcells[comp_idx] * cq_p;
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const EvalWell cq_s_oil = cq_s[oilCompIdx];
|
|
const EvalWell cq_s_gas = cq_s[gasCompIdx];
|
|
cq_s[gasCompIdx] += rs * cq_s_oil;
|
|
cq_s[oilCompIdx] += rv * cq_s_gas;
|
|
}
|
|
} else { // injecting perforations
|
|
// Do nothing if crossflow is not allowed
|
|
if (!allow_cf && well_type_ == PRODUCER) {
|
|
return;
|
|
}
|
|
|
|
// for injecting perforations, we use total mobility
|
|
EvalWell total_mob = mob_perfcells[0];
|
|
for (int comp_idx = 1; comp_idx < num_components_; ++comp_idx) {
|
|
total_mob += mob_perfcells[comp_idx];
|
|
}
|
|
|
|
// injection perforations total volume rates
|
|
const EvalWell cqt_i = - well_index_[perf] * (total_mob * drawdown);
|
|
|
|
// compute volume ratio between connection and at standard conditions
|
|
EvalWell volume_ratio = 0.0;
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
volume_ratio += cmix_s[waterCompIdx] / b_perfcells[waterCompIdx];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
|
|
// Incorporate RS/RV factors if both oil and gas active
|
|
// TODO: not sure we use rs rv from the perforation cells when handling injecting perforations
|
|
// basically, for injecting perforations, the wellbore is the upstreaming side.
|
|
const EvalWell d = 1.0 - rv * rs;
|
|
|
|
if (d.value() == 0.0) {
|
|
OPM_THROW(Opm::NumericalIssue, "Zero d value obtained for well " << name() << " during flux calcuation"
|
|
<< " with rs " << rs << " and rv " << rv);
|
|
}
|
|
|
|
const EvalWell tmp_oil = (cmix_s[oilCompIdx] - rv * cmix_s[gasCompIdx]) / d;
|
|
volume_ratio += tmp_oil / b_perfcells[oilCompIdx];
|
|
|
|
const EvalWell tmp_gas = (cmix_s[gasCompIdx] - rs * cmix_s[oilCompIdx]) / d;
|
|
volume_ratio += tmp_gas / b_perfcells[gasCompIdx];
|
|
} else { // not having gas and oil at the same time
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
volume_ratio += cmix_s[oilCompIdx] / b_perfcells[oilCompIdx];
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
volume_ratio += cmix_s[gasCompIdx] / b_perfcells[gasCompIdx];
|
|
}
|
|
}
|
|
// injecting connections total volumerates at standard conditions
|
|
EvalWell cqt_is = cqt_i / volume_ratio;
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
cq_s[comp_idx] = cmix_s[comp_idx] * cqt_is;
|
|
}
|
|
} // end for injection perforations
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
extendEval(const Eval& in) const
|
|
{
|
|
EvalWell out = 0.0;
|
|
out.setValue(in.value());
|
|
for(int eq_idx = 0; eq_idx < numEq;++eq_idx) {
|
|
out.setDerivative(eq_idx, in.derivative(eq_idx));
|
|
}
|
|
return out;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
computeSegmentFluidProperties(const Simulator& ebosSimulator)
|
|
{
|
|
// TODO: the concept of phases and components are rather confusing in this function.
|
|
// needs to be addressed sooner or later.
|
|
|
|
// get the temperature for later use. It is only useful when we are not handling
|
|
// thermal related simulation
|
|
// basically, it is a single value for all the segments
|
|
|
|
EvalWell temperature;
|
|
// not sure how to handle the pvt region related to segment
|
|
// for the current approach, we use the pvt region of the first perforated cell
|
|
// although there are some text indicating using the pvt region of the lowest
|
|
// perforated cell
|
|
// TODO: later to investigate how to handle the pvt region
|
|
int pvt_region_index;
|
|
{
|
|
// using the first perforated cell
|
|
const int cell_idx = well_cells_[0];
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& fs = intQuants.fluidState();
|
|
temperature.setValue(fs.temperature(FluidSystem::oilPhaseIdx).value());
|
|
pvt_region_index = fs.pvtRegionIndex();
|
|
}
|
|
|
|
std::vector<double> surf_dens(num_components_);
|
|
// Surface density.
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned compIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
surf_dens[compIdx] = FluidSystem::referenceDensity( phaseIdx, pvt_region_index );
|
|
}
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
// the compostion of the components inside wellbore under surface condition
|
|
std::vector<EvalWell> mix_s(num_components_, 0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
mix_s[comp_idx] = surfaceVolumeFraction(seg, comp_idx);
|
|
}
|
|
|
|
std::vector<EvalWell> b(num_components_, 0.0);
|
|
std::vector<EvalWell> visc(num_components_, 0.0);
|
|
|
|
const EvalWell seg_pressure = getSegmentPressure(seg);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const unsigned waterCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx);
|
|
b[waterCompIdx] =
|
|
FluidSystem::waterPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[waterCompIdx] =
|
|
FluidSystem::waterPvt().viscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
|
|
EvalWell rv(0.0);
|
|
// gas phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
const EvalWell rvmax = FluidSystem::gasPvt().saturatedOilVaporizationFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
rv = mix_s[oilCompIdx] / mix_s[gasCompIdx];
|
|
}
|
|
|
|
if (rv > rvmax) {
|
|
rv = rvmax;
|
|
}
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rv);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().viscosity(pvt_region_index, temperature, seg_pressure, rv);
|
|
} else { // no oil exists
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no Liquid phase
|
|
// it is the same with zero mix_s[Oil]
|
|
b[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[gasCompIdx] =
|
|
FluidSystem::gasPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
EvalWell rs(0.0);
|
|
// oil phase
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const EvalWell rsmax = FluidSystem::oilPvt().saturatedGasDissolutionFactor(pvt_region_index, temperature, seg_pressure);
|
|
if (mix_s[gasCompIdx] > 0.0) {
|
|
if (mix_s[oilCompIdx] > 0.0) {
|
|
rs = mix_s[gasCompIdx] / mix_s[oilCompIdx];
|
|
}
|
|
|
|
if (rs > rsmax) {
|
|
rs = rsmax;
|
|
}
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().inverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure, rs);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().viscosity(pvt_region_index, temperature, seg_pressure, rs);
|
|
} else { // no oil exists
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
} else { // no Liquid phase
|
|
// it is the same with zero mix_s[Oil]
|
|
b[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedInverseFormationVolumeFactor(pvt_region_index, temperature, seg_pressure);
|
|
visc[oilCompIdx] =
|
|
FluidSystem::oilPvt().saturatedViscosity(pvt_region_index, temperature, seg_pressure);
|
|
}
|
|
}
|
|
|
|
std::vector<EvalWell> mix(mix_s);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const unsigned gasCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
const unsigned oilCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx);
|
|
|
|
if (rs != 0.0) { // rs > 0.0?
|
|
mix[gasCompIdx] = (mix_s[gasCompIdx] - mix_s[oilCompIdx] * rs) / (1. - rs * rv);
|
|
}
|
|
if (rv != 0.0) { // rv > 0.0?
|
|
mix[oilCompIdx] = (mix_s[oilCompIdx] - mix_s[gasCompIdx] * rv) / (1. - rs * rv);
|
|
}
|
|
}
|
|
|
|
EvalWell volrat(0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
volrat += mix[comp_idx] / b[comp_idx];
|
|
}
|
|
|
|
segment_viscosities_[seg] = 0.;
|
|
// calculate the average viscosity
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell comp_fraction = mix[comp_idx] / b[comp_idx] / volrat;
|
|
segment_viscosities_[seg] += visc[comp_idx] * comp_fraction;
|
|
}
|
|
|
|
EvalWell density(0.0);
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
density += surf_dens[comp_idx] * mix_s[comp_idx];
|
|
}
|
|
segment_densities_[seg] = density / volrat;
|
|
|
|
// calculate the mass rates
|
|
segment_mass_rates_[seg] = 0.;
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell rate = getSegmentRate(seg, comp_idx);
|
|
segment_mass_rates_[seg] += rate * surf_dens[comp_idx];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentPressure(const int seg) const
|
|
{
|
|
return primary_variables_evaluation_[seg][SPres];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentRate(const int seg,
|
|
const int comp_idx) const
|
|
{
|
|
return primary_variables_evaluation_[seg][GTotal] * volumeFractionScaled(seg, comp_idx);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getSegmentGTotal(const int seg) const
|
|
{
|
|
return primary_variables_evaluation_[seg][GTotal];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
getMobility(const Simulator& ebosSimulator,
|
|
const int perf,
|
|
std::vector<EvalWell>& mob) const
|
|
{
|
|
// TODO: most of this function, if not the whole function, can be moved to the base class
|
|
const int cell_idx = well_cells_[perf];
|
|
assert (int(mob.size()) == num_components_);
|
|
const auto& intQuants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/0));
|
|
const auto& materialLawManager = ebosSimulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calcualte its own
|
|
// based on passing the saturation table index
|
|
const int satid = saturation_table_number_[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if( satid == satid_elem ) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
|
|
}
|
|
// if (has_solvent) {
|
|
// mob[contiSolventEqIdx] = extendEval(intQuants.solventMobility());
|
|
// }
|
|
} else {
|
|
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
Eval relativePerms[3] = { 0.0, 0.0, 0.0 };
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleControlEq() const
|
|
{
|
|
EvalWell control_eq(0.0);
|
|
|
|
switch (well_controls_get_current_type(well_controls_)) {
|
|
case THP: // not handling this one for now
|
|
{
|
|
OPM_THROW(std::runtime_error, "Not handling THP control for Multisegment wells for now");
|
|
}
|
|
case BHP:
|
|
{
|
|
const double target_bhp = well_controls_get_current_target(well_controls_);
|
|
control_eq = getSegmentPressure(0) - target_bhp;
|
|
break;
|
|
}
|
|
case SURFACE_RATE:
|
|
{
|
|
// finding if it is a single phase control or combined phase control
|
|
int number_phases_under_control = 0;
|
|
const double* distr = well_controls_get_current_distr(well_controls_);
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.0) {
|
|
++number_phases_under_control;
|
|
}
|
|
}
|
|
assert(number_phases_under_control > 0);
|
|
|
|
const std::vector<double> g = {1.0, 1.0, 0.01};
|
|
const double target_rate = well_controls_get_current_target(well_controls_);
|
|
// TODO: the two situations below should be able to be merged to be handled as one situation
|
|
|
|
if (number_phases_under_control == 1) { // single phase control
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.) { // under the control of this phase
|
|
control_eq = getSegmentGTotal(0) * volumeFraction(0, flowPhaseToEbosCompIdx(phase)) - g[phase] * target_rate;
|
|
break;
|
|
}
|
|
}
|
|
} else { // multiphase rate control
|
|
EvalWell rate_for_control(0.0);
|
|
const EvalWell G_total = getSegmentGTotal(0);
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.) {
|
|
rate_for_control += G_total * volumeFractionScaled(0, flowPhaseToEbosCompIdx(phase));
|
|
}
|
|
}
|
|
// TODO: maybe the following equation can be scaled a little bit for gas phase
|
|
control_eq = rate_for_control - target_rate;
|
|
}
|
|
break;
|
|
}
|
|
case RESERVOIR_RATE:
|
|
{
|
|
EvalWell rate_for_control(0.0); // reservoir rate
|
|
const double* distr = well_controls_get_current_distr(well_controls_);
|
|
for (int phase = 0; phase < number_of_phases_; ++phase) {
|
|
if (distr[phase] > 0.) {
|
|
rate_for_control += getSegmentGTotal(0) * volumeFraction(0, flowPhaseToEbosCompIdx(phase));
|
|
}
|
|
}
|
|
const double target_rate = well_controls_get_current_target(well_controls_);
|
|
control_eq = rate_for_control - target_rate;
|
|
break;
|
|
}
|
|
default:
|
|
OPM_THROW(std::runtime_error, "Unknown well control control types for well " << name());
|
|
}
|
|
|
|
|
|
// using control_eq to update the matrix and residuals
|
|
|
|
resWell_[0][SPres] = control_eq.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assemblePressureEq(const int seg) const
|
|
{
|
|
assert(seg != 0); // not top segment
|
|
|
|
// for top segment, the well control equation will be used.
|
|
EvalWell pressure_equation = getSegmentPressure(seg);
|
|
|
|
// we need to handle the pressure difference between the two segments
|
|
// we only consider the hydrostatic pressure loss first
|
|
pressure_equation -= getHydroPressureLoss(seg);
|
|
|
|
if (frictionalPressureLossConsidered()) {
|
|
pressure_equation -= getFrictionPressureLoss(seg);
|
|
}
|
|
|
|
resWell_[seg][SPres] = pressure_equation.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] = pressure_equation.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// contribution from the outlet segment
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const EvalWell outlet_pressure = getSegmentPressure(outlet_segment_index);
|
|
|
|
resWell_[seg][SPres] -= outlet_pressure.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][outlet_segment_index][SPres][pv_idx] = -outlet_pressure.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
if (accelerationalPressureLossConsidered()) {
|
|
handleAccelerationPressureLoss(seg);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getHydroPressureLoss(const int seg) const
|
|
{
|
|
return segment_densities_[seg] * gravity_ * segment_depth_diffs_[seg];
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
typename MultisegmentWell<TypeTag>::EvalWell
|
|
MultisegmentWell<TypeTag>::
|
|
getFrictionPressureLoss(const int seg) const
|
|
{
|
|
const EvalWell mass_rate = segment_mass_rates_[seg];
|
|
const EvalWell density = segment_densities_[seg];
|
|
const EvalWell visc = segment_viscosities_[seg];
|
|
const int outlet_segment_index = segmentNumberToIndex(segmentSet()[seg].outletSegment());
|
|
const double length = segmentSet()[seg].totalLength() - segmentSet()[outlet_segment_index].totalLength();
|
|
assert(length > 0.);
|
|
const double roughness = segmentSet()[seg].roughness();
|
|
const double area = segmentSet()[seg].crossArea();
|
|
const double diameter = segmentSet()[seg].internalDiameter();
|
|
|
|
const double sign = mass_rate < 0. ? 1.0 : - 1.0;
|
|
|
|
return sign * mswellhelpers::frictionPressureLoss(length, diameter, area, roughness, density, mass_rate, visc);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
handleAccelerationPressureLoss(const int seg) const
|
|
{
|
|
// TODO: this pressure loss is not significant enough to be well tested yet.
|
|
// handle the out velcocity head
|
|
const double area = segmentSet()[seg].crossArea();
|
|
const EvalWell mass_rate = segment_mass_rates_[seg];
|
|
const EvalWell density = segment_densities_[seg];
|
|
const EvalWell out_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density);
|
|
|
|
resWell_[seg][SPres] -= out_velocity_head.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][SPres][pv_idx] -= out_velocity_head.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
// calcuate the maximum cross-area among the segment and its inlet segments
|
|
double max_area = area;
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
const double inlet_area = segmentSet()[inlet].crossArea();
|
|
if (inlet_area > max_area) {
|
|
max_area = inlet_area;
|
|
}
|
|
}
|
|
|
|
// handling the velocity head of intlet segments
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
const EvalWell density = segment_densities_[inlet];
|
|
const EvalWell mass_rate = segment_mass_rates_[inlet];
|
|
const EvalWell inlet_velocity_head = mswellhelpers::velocityHead(area, mass_rate, density);
|
|
resWell_[seg][SPres] += inlet_velocity_head.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][inlet][SPres][pv_idx] += inlet_velocity_head.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
processFractions(const int seg) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
|
|
std::vector<double> fractions(number_of_phases_, 0.0);
|
|
|
|
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
fractions[oil_pos] = 1.0;
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
fractions[water_pos] = primary_variables_[seg][WFrac];
|
|
fractions[oil_pos] -= fractions[water_pos];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
fractions[gas_pos] = primary_variables_[seg][GFrac];
|
|
fractions[oil_pos] -= fractions[gas_pos];
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
if (fractions[water_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[water_pos]);
|
|
}
|
|
fractions[oil_pos] /= (1.0 - fractions[water_pos]);
|
|
fractions[water_pos] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
if (fractions[gas_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[gas_pos]);
|
|
}
|
|
fractions[oil_pos] /= (1.0 - fractions[gas_pos]);
|
|
fractions[gas_pos] = 0.0;
|
|
}
|
|
}
|
|
|
|
if (fractions[oil_pos] < 0.0) {
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Water]] /= (1.0 - fractions[oil_pos]);
|
|
}
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
fractions[pu.phase_pos[Gas]] /= (1.0 - fractions[oil_pos]);
|
|
}
|
|
fractions[oil_pos] = 0.0;
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
primary_variables_[seg][WFrac] = fractions[pu.phase_pos[Water]];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
primary_variables_[seg][GFrac] = fractions[pu.phase_pos[Gas]];
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
updateWellStateFromPrimaryVariables(WellState& well_state) const
|
|
{
|
|
const PhaseUsage& pu = phaseUsage();
|
|
assert( FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) );
|
|
const int oil_pos = pu.phase_pos[Oil];
|
|
|
|
for (int seg = 0; seg < numberOfSegments(); ++seg) {
|
|
std::vector<double> fractions(number_of_phases_, 0.0);
|
|
fractions[oil_pos] = 1.0;
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx) ) {
|
|
const int water_pos = pu.phase_pos[Water];
|
|
fractions[water_pos] = primary_variables_[seg][WFrac];
|
|
fractions[oil_pos] -= fractions[water_pos];
|
|
}
|
|
|
|
if ( FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx) ) {
|
|
const int gas_pos = pu.phase_pos[Gas];
|
|
fractions[gas_pos] = primary_variables_[seg][GFrac];
|
|
fractions[oil_pos] -= fractions[gas_pos];
|
|
}
|
|
|
|
// convert the fractions to be Q_p / G_total to calculate the phase rates
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double scale = scalingFactor(p);
|
|
// for injection wells, there should only one non-zero scaling factor
|
|
if (scale > 0.) {
|
|
fractions[p] /= scale;
|
|
} else {
|
|
// this should only happens to injection wells
|
|
fractions[p] = 0.;
|
|
}
|
|
}
|
|
|
|
// calculate the phase rates based on the primary variables
|
|
const double g_total = primary_variables_[seg][GTotal];
|
|
const int top_segment_index = well_state.topSegmentIndex(index_of_well_);
|
|
for (int p = 0; p < number_of_phases_; ++p) {
|
|
const double phase_rate = g_total * fractions[p];
|
|
well_state.segRates()[(seg + top_segment_index) * number_of_phases_ + p] = phase_rate;
|
|
if (seg == 0) { // top segment
|
|
well_state.wellRates()[index_of_well_ * number_of_phases_ + p] = phase_rate;
|
|
}
|
|
}
|
|
|
|
// update the segment pressure
|
|
well_state.segPress()[seg + top_segment_index] = primary_variables_[seg][SPres];
|
|
if (seg == 0) { // top segment
|
|
well_state.bhp()[index_of_well_] = well_state.segPress()[seg + top_segment_index];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
frictionalPressureLossConsidered() const
|
|
{
|
|
// HF- and HFA needs to consider frictional pressure loss
|
|
return (segmentSet().compPressureDrop() != WellSegment::H__);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
MultisegmentWell<TypeTag>::
|
|
accelerationalPressureLossConsidered() const
|
|
{
|
|
return (segmentSet().compPressureDrop() == WellSegment::HFA);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
iterateWellEquations(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state)
|
|
{
|
|
// basically, it only iterate through the equations.
|
|
// we update the primary variables
|
|
// if converged, we can update the well_state.
|
|
// the function updateWellState() should have a flag to show
|
|
// if we will update the well state.
|
|
const int max_iter_number = param_.max_inner_iter_ms_wells_;
|
|
int it = 0;
|
|
for (; it < max_iter_number; ++it) {
|
|
|
|
assembleWellEqWithoutIteration(ebosSimulator, dt, well_state, true);
|
|
|
|
const BVectorWell dx_well = mswellhelpers::invDXDirect(duneD_, resWell_);
|
|
|
|
// TODO: use these small values for now, not intend to reach the convergence
|
|
// in this stage, but, should we?
|
|
// We should try to avoid hard-code values in the code.
|
|
// If we want to use the real one, we need to find a way to get them.
|
|
// const std::vector<double> B {0.8, 0.8, 0.008};
|
|
const std::vector<double> B {0.5, 0.5, 0.005};
|
|
|
|
const ConvergenceReport report = getWellConvergence(B);
|
|
|
|
if (report.converged) {
|
|
break;
|
|
}
|
|
|
|
updateWellState(dx_well, true, well_state);
|
|
|
|
initPrimaryVariablesEvaluation();
|
|
}
|
|
// TODO: maybe we should not use these values if they are not converged.
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
MultisegmentWell<TypeTag>::
|
|
assembleWellEqWithoutIteration(Simulator& ebosSimulator,
|
|
const double dt,
|
|
WellState& well_state,
|
|
bool only_wells)
|
|
{
|
|
// calculate the fluid properties needed.
|
|
computeSegmentFluidProperties(ebosSimulator);
|
|
|
|
// clear all entries
|
|
if (!only_wells) {
|
|
duneB_ = 0.0;
|
|
duneC_ = 0.0;
|
|
}
|
|
|
|
duneD_ = 0.0;
|
|
resWell_ = 0.0;
|
|
|
|
// for the black oil cases, there will be four equations,
|
|
// the first three of them are the mass balance equations, the last one is the pressure equations.
|
|
//
|
|
// but for the top segment, the pressure equation will be the well control equation, and the other three will be the same.
|
|
|
|
auto& ebosJac = ebosSimulator.model().linearizer().matrix();
|
|
auto& ebosResid = ebosSimulator.model().linearizer().residual();
|
|
|
|
const bool allow_cf = getAllowCrossFlow();
|
|
|
|
const int nseg = numberOfSegments();
|
|
|
|
for (int seg = 0; seg < nseg; ++seg) {
|
|
// calculating the accumulation term // TODO: without considering the efficiencty factor for now
|
|
// volume of the segment
|
|
{
|
|
const double volume = segmentSet()[seg].volume();
|
|
// for each component
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
EvalWell accumulation_term = volume / dt * (surfaceVolumeFraction(seg, comp_idx) - segment_comp_initial_[seg][comp_idx])
|
|
+ getSegmentRate(seg, comp_idx);
|
|
|
|
resWell_[seg][comp_idx] += accumulation_term.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
}
|
|
|
|
// considering the contributions from the inlet segments
|
|
{
|
|
for (const int inlet : segment_inlets_[seg]) {
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
const EvalWell inlet_rate = getSegmentRate(inlet, comp_idx);
|
|
resWell_[seg][comp_idx] -= inlet_rate.value();
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
duneD_[seg][inlet][comp_idx][pv_idx] -= inlet_rate.derivative(pv_idx + numEq);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// calculating the perforation rate for each perforation that belongs to this segment
|
|
const EvalWell seg_pressure = getSegmentPressure(seg);
|
|
for (const int perf : segment_perforations_[seg]) {
|
|
const int cell_idx = well_cells_[perf];
|
|
const auto& int_quants = *(ebosSimulator.model().cachedIntensiveQuantities(cell_idx, /*timeIdx=*/ 0));
|
|
std::vector<EvalWell> mob(num_components_, 0.0);
|
|
getMobility(ebosSimulator, perf, mob);
|
|
std::vector<EvalWell> cq_s(num_components_, 0.0);
|
|
computePerfRate(int_quants, mob, seg, perf, seg_pressure, allow_cf, cq_s);
|
|
|
|
for (int comp_idx = 0; comp_idx < num_components_; ++comp_idx) {
|
|
// the cq_s entering mass balance equations need to consider the efficiency factors.
|
|
const EvalWell cq_s_effective = cq_s[comp_idx] * well_efficiency_factor_;
|
|
|
|
if (!only_wells) {
|
|
// subtract sum of component fluxes in the reservoir equation.
|
|
// need to consider the efficiency factor
|
|
ebosResid[cell_idx][comp_idx] -= cq_s_effective.value();
|
|
}
|
|
|
|
// subtract sum of phase fluxes in the well equations.
|
|
resWell_[seg][comp_idx] -= cq_s_effective.value();
|
|
|
|
// assemble the jacobians
|
|
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
|
|
if (!only_wells) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
duneC_[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + numEq); // intput in transformed matrix
|
|
}
|
|
// the index name for the D should be eq_idx / pv_idx
|
|
duneD_[seg][seg][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx + numEq);
|
|
}
|
|
|
|
for (int pv_idx = 0; pv_idx < numEq; ++pv_idx) {
|
|
if (!only_wells) {
|
|
// also need to consider the efficiency factor when manipulating the jacobians.
|
|
ebosJac[cell_idx][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx);
|
|
duneB_[seg][cell_idx][comp_idx][pv_idx] -= cq_s_effective.derivative(pv_idx);
|
|
}
|
|
}
|
|
}
|
|
// TODO: we should save the perforation pressure and preforation rates?
|
|
// we do not use it in the simulation for now, while we might need them if
|
|
// we handle the pressure in SEG mode.
|
|
}
|
|
|
|
// the fourth dequation, the pressure drop equation
|
|
if (seg == 0) { // top segment, pressure equation is the control equation
|
|
assembleControlEq();
|
|
} else {
|
|
assemblePressureEq(seg);
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|