mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-27 09:40:59 -06:00
3087950c35
move ebos/ecldummygradientcalculator.hh to opm/simulators/flow
603 lines
20 KiB
C++
603 lines
20 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::EclProblem
|
|
*/
|
|
#ifndef ECL_PROBLEM_PROPERTIES_HH
|
|
#define ECL_PROBLEM_PROPERTIES_HH
|
|
|
|
#include <ebos/eclbaseaquifermodel.hh>
|
|
#include <ebos/eclcpgridvanguard.hh>
|
|
#include <ebos/eclfluxmodule.hh>
|
|
#include <ebos/eclnewtonmethod.hh>
|
|
#include <ebos/ecloutputblackoilmodule.hh>
|
|
#include <ebos/eclwriter.hh>
|
|
#if HAVE_DAMARIS
|
|
#include <ebos/damariswriter.hh>
|
|
#endif
|
|
#include <ebos/FIBlackOilModel.hpp>
|
|
#include <ebos/vtkecltracermodule.hh>
|
|
|
|
#include <opm/input/eclipse/Parser/ParserKeywords/E.hpp>
|
|
|
|
#include <opm/material/fluidmatrixinteractions/EclMaterialLawManager.hpp>
|
|
#include <opm/material/thermal/EclThermalLawManager.hpp>
|
|
|
|
#include <opm/models/discretization/ecfv/ecfvdiscretization.hh>
|
|
#include <opm/models/utils/propertysystem.hh>
|
|
|
|
#include <opm/simulators/flow/DummyGradientCalculator.hpp>
|
|
|
|
#include <tuple>
|
|
|
|
namespace Opm {
|
|
template <class TypeTag>
|
|
class EclProblem;
|
|
}
|
|
|
|
namespace Opm::Properties {
|
|
|
|
namespace TTag {
|
|
|
|
struct EclBaseProblem {
|
|
using InheritsFrom = std::tuple<VtkEclTracer, EclOutputBlackOil, EclCpGridVanguard>;
|
|
};
|
|
}
|
|
|
|
// The class which deals with wells
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct WellModel {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// Write all solutions for visualization, not just the ones for the
|
|
// report steps...
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableWriteAllSolutions {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// The number of time steps skipped between writing two consequtive restart files
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct RestartWritingInterval {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// Enable partial compensation of systematic mass losses via the source term of the next time
|
|
// step
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EclEnableDriftCompensation {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// Enable the additional checks even if compiled in debug mode (i.e., with the NDEBUG
|
|
// macro undefined). Next to a slightly better performance, this also eliminates some
|
|
// print statements in debug mode.
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableDebuggingChecks {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// if thermal flux boundaries are enabled an effort is made to preserve the initial
|
|
// thermal gradient specified via the TEMPVD keyword
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableThermalFluxBoundaries {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// Specify whether API tracking should be enabled (replaces PVT regions).
|
|
// TODO: This is not yet implemented
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct EnableApiTracking {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
// The class which deals with ECL aquifers
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct AquiferModel {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct OutputMode {
|
|
using type = UndefinedProperty;
|
|
};
|
|
// Parameterize equilibration accuracy
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct NumPressurePointsEquil {
|
|
using type = UndefinedProperty;
|
|
};
|
|
// implicit or explicit pressure in rock compaction
|
|
template<class TypeTag, class MyTypeTag>
|
|
struct ExplicitRockCompaction {
|
|
using type = UndefinedProperty;
|
|
};
|
|
|
|
|
|
|
|
// Set the problem property
|
|
template<class TypeTag>
|
|
struct Problem<TypeTag, TTag::EclBaseProblem> {
|
|
using type = EclProblem<TypeTag>;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct Model<TypeTag, TTag::EclBaseProblem> {
|
|
using type = FIBlackOilModel<TypeTag>;
|
|
};
|
|
|
|
// Select the element centered finite volume method as spatial discretization
|
|
template<class TypeTag>
|
|
struct SpatialDiscretizationSplice<TypeTag, TTag::EclBaseProblem> {
|
|
using type = TTag::EcfvDiscretization;
|
|
};
|
|
|
|
//! for ebos, use automatic differentiation to linearize the system of PDEs
|
|
template<class TypeTag>
|
|
struct LocalLinearizerSplice<TypeTag, TTag::EclBaseProblem> {
|
|
using type = TTag::AutoDiffLocalLinearizer;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct BaseDiscretizationType<TypeTag, TTag::EclBaseProblem> {
|
|
using type = FvBaseDiscretizationNoAdapt<TypeTag>;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct DiscreteFunction<TypeTag, TTag::EclBaseProblem> {
|
|
using BaseDiscretization = FvBaseDiscretization<TypeTag>;
|
|
using type = typename BaseDiscretization::BlockVectorWrapper;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct GridView<TypeTag, TTag::EclBaseProblem>
|
|
{
|
|
using type = typename GetPropType<TypeTag, Properties::Grid>::LeafGridView;
|
|
};
|
|
|
|
// Set the material law for fluid fluxes
|
|
template<class TypeTag>
|
|
struct MaterialLaw<TypeTag, TTag::EclBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
using Traits = ThreePhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::waterPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::oilPhaseIdx,
|
|
/*gasPhaseIdx=*/FluidSystem::gasPhaseIdx>;
|
|
|
|
public:
|
|
using EclMaterialLawManager = ::Opm::EclMaterialLawManager<Traits>;
|
|
|
|
using type = typename EclMaterialLawManager::MaterialLaw;
|
|
};
|
|
|
|
// Set the material law for energy storage in rock
|
|
template<class TypeTag>
|
|
struct SolidEnergyLaw<TypeTag, TTag::EclBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
|
|
|
|
using type = typename EclThermalLawManager::SolidEnergyLaw;
|
|
};
|
|
|
|
// Set the material law for thermal conduction
|
|
template<class TypeTag>
|
|
struct ThermalConductionLaw<TypeTag, TTag::EclBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
|
|
public:
|
|
using EclThermalLawManager = ::Opm::EclThermalLawManager<Scalar, FluidSystem>;
|
|
|
|
using type = typename EclThermalLawManager::ThermalConductionLaw;
|
|
};
|
|
|
|
// ebos can use a slightly faster stencil class because it does not need the normals and
|
|
// the integration points of intersections
|
|
template<class TypeTag>
|
|
struct Stencil<TypeTag, TTag::EclBaseProblem>
|
|
{
|
|
private:
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
|
|
public:
|
|
using type = EcfvStencil<Scalar,
|
|
GridView,
|
|
/*needIntegrationPos=*/false,
|
|
/*needNormal=*/false>;
|
|
};
|
|
|
|
// by default use the dummy aquifer "model"
|
|
template<class TypeTag>
|
|
struct AquiferModel<TypeTag, TTag::EclBaseProblem> {
|
|
using type = EclBaseAquiferModel<TypeTag>;
|
|
};
|
|
|
|
// Enable gravity
|
|
template<class TypeTag>
|
|
struct EnableGravity<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// Enable diffusion
|
|
template<class TypeTag>
|
|
struct EnableDiffusion<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// Enable dispersion
|
|
template<class TypeTag>
|
|
struct EnableDispersion<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// only write the solutions for the report steps to disk
|
|
template<class TypeTag>
|
|
struct EnableWriteAllSolutions<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// disable API tracking
|
|
template<class TypeTag>
|
|
struct EnableApiTracking<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// The default for the end time of the simulation [s]
|
|
//
|
|
// By default, stop it after the universe will probably have stopped
|
|
// to exist. (the ECL problem will finish the simulation explicitly
|
|
// after it simulated the last episode specified in the deck.)
|
|
template<class TypeTag>
|
|
struct EndTime<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e100;
|
|
};
|
|
|
|
// The default for the initial time step size of the simulation [s].
|
|
//
|
|
// The chosen value means that the size of the first time step is the
|
|
// one of the initial episode (if the length of the initial episode is
|
|
// not millions of trillions of years, that is...)
|
|
template<class TypeTag>
|
|
struct InitialTimeStepSize<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 3600*24;
|
|
};
|
|
|
|
// the default for the allowed volumetric error for oil per second
|
|
template<class TypeTag>
|
|
struct NewtonTolerance<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e-2;
|
|
};
|
|
|
|
// the tolerated amount of "incorrect" amount of oil per time step for the complete
|
|
// reservoir. this is scaled by the pore volume of the reservoir, i.e., larger reservoirs
|
|
// will tolerate larger residuals.
|
|
template<class TypeTag>
|
|
struct EclNewtonSumTolerance<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e-4;
|
|
};
|
|
|
|
// set the exponent for the volume scaling of the sum tolerance: larger reservoirs can
|
|
// tolerate a higher amount of mass lost per time step than smaller ones! since this is
|
|
// not linear, we use the cube root of the overall pore volume by default, i.e., the
|
|
// value specified by the NewtonSumTolerance parameter is the "incorrect" mass per
|
|
// timestep for an reservoir that exhibits 1 m^3 of pore volume. A reservoir with a total
|
|
// pore volume of 10^3 m^3 will tolerate 10 times as much.
|
|
template<class TypeTag>
|
|
struct EclNewtonSumToleranceExponent<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1.0/3.0;
|
|
};
|
|
|
|
// set number of Newton iterations where the volumetric residual is considered for
|
|
// convergence
|
|
template<class TypeTag>
|
|
struct EclNewtonStrictIterations<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 8;
|
|
};
|
|
|
|
// set fraction of the pore volume where the volumetric residual may be violated during
|
|
// strict Newton iterations
|
|
template<class TypeTag>
|
|
struct EclNewtonRelaxedVolumeFraction<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 0.03;
|
|
};
|
|
|
|
// the maximum volumetric error of a cell in the relaxed region
|
|
template<class TypeTag>
|
|
struct EclNewtonRelaxedTolerance<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 1e9;
|
|
};
|
|
|
|
// Ignore the maximum error mass for early termination of the newton method.
|
|
template<class TypeTag>
|
|
struct NewtonMaxError<TypeTag, TTag::EclBaseProblem> {
|
|
using type = GetPropType<TypeTag, Scalar>;
|
|
static constexpr type value = 10e9;
|
|
};
|
|
|
|
// set the maximum number of Newton iterations to 14 because the likelyhood that a time
|
|
// step succeeds at more than 14 Newton iteration is rather small
|
|
template<class TypeTag>
|
|
struct NewtonMaxIterations<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 14;
|
|
};
|
|
|
|
// also, reduce the target for the "optimum" number of Newton iterations to 6. Note that
|
|
// this is only relevant if the time step is reduced from the report step size for some
|
|
// reason. (because ebos first tries to do a report step using a single time step.)
|
|
template<class TypeTag>
|
|
struct NewtonTargetIterations<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 6;
|
|
};
|
|
|
|
// Disable the VTK output by default for this problem ...
|
|
template<class TypeTag>
|
|
struct EnableVtkOutput<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// ... but enable the ECL output by default
|
|
template<class TypeTag>
|
|
struct EnableEclOutput<TypeTag,TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
#ifdef HAVE_DAMARIS
|
|
//! Disable the Damaris HDF5 output by default
|
|
template<class TypeTag>
|
|
struct EnableDamarisOutput<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
// If Damaris is available, write specific variable output in parallel
|
|
template<class TypeTag>
|
|
struct DamarisOutputHdfCollective<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
// Save the reservoir model mesh data to the HDF5 file (even if field data HDF5 output is disabled)
|
|
template<class TypeTag>
|
|
struct DamarisSaveMeshToHdf<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
// Save the simulation fields (currently only PRESSURE) variables to HDF5 file
|
|
template<class TypeTag>
|
|
struct DamarisSaveToHdf<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
// Specify path and filename of a Python script to run on each end of iteration output
|
|
template<class TypeTag>
|
|
struct DamarisPythonScript<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "";
|
|
};
|
|
// Specifiy a Paraview Catalyst in situ visualisation script (if Paraview is enabled in Damaris)
|
|
template<class TypeTag>
|
|
struct DamarisPythonParaviewScript<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "";
|
|
};
|
|
// Specify a unique name for the Damaris simulation (used as prefix to HDF5 filenames)
|
|
template<class TypeTag>
|
|
struct DamarisSimName<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "";
|
|
};
|
|
// Specify the number of Damaris cores (dc) to create (per-node). Must divide into the remaining ranks
|
|
// equally, e.g. mpirun -np 16 ... -> (if running on one node)
|
|
// The following are allowed:
|
|
// 1 dc + 15 sim ranks
|
|
// or 2 dc + 14 sim
|
|
// or 4 dc + 12 sim
|
|
// *not* 3 dc + 13 sim ranks
|
|
template<class TypeTag>
|
|
struct DamarisDedicatedCores<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 1;
|
|
};
|
|
// Specify the number of Damaris nodes to create
|
|
template<class TypeTag>
|
|
struct DamarisDedicatedNodes<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 0;
|
|
};
|
|
// Specify a name for the Damaris shared memory file (a unique name will be created by default)
|
|
template<class TypeTag>
|
|
struct DamarisSharedMemoryName<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "" ; // default name is empty, will make unique if needed in DamarisKeywords()
|
|
};
|
|
// Specify the shared memory file size
|
|
template<class TypeTag>
|
|
struct DamarisSharedMemorySizeBytes<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr long value = 536870912; // 512 MB
|
|
};
|
|
// Specify the Damaris log level - if set to debug then log is flushed regularly
|
|
template<class TypeTag>
|
|
struct DamarisLogLevel<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "info";
|
|
};
|
|
// Specify the dask file jason file that specifies the Dask scheduler etc.
|
|
template<class TypeTag>
|
|
struct DamarisDaskFile<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "";
|
|
};
|
|
#endif
|
|
// If available, write the ECL output in a non-blocking manner
|
|
template<class TypeTag>
|
|
struct EnableAsyncEclOutput<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// Write ESMRY file for fast loading of summary data
|
|
template<class TypeTag>
|
|
struct EnableEsmry<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// By default, use single precision for the ECL formated results
|
|
template<class TypeTag>
|
|
struct EclOutputDoublePrecision<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// The default location for the ECL output files
|
|
template<class TypeTag>
|
|
struct OutputDir<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = ".";
|
|
};
|
|
|
|
// the cache for intensive quantities can be used for ECL problems and also yields a
|
|
// decent speedup...
|
|
template<class TypeTag>
|
|
struct EnableIntensiveQuantityCache<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// the cache for the storage term can also be used and also yields a decent speedup
|
|
template<class TypeTag>
|
|
struct EnableStorageCache<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// Use the "velocity module" which uses the Eclipse "NEWTRAN" transmissibilities
|
|
template<class TypeTag>
|
|
struct FluxModule<TypeTag, TTag::EclBaseProblem> {
|
|
using type = EclTransFluxModule<TypeTag>;
|
|
};
|
|
|
|
// Use the dummy gradient calculator in order not to do unnecessary work.
|
|
template<class TypeTag>
|
|
struct GradientCalculator<TypeTag, TTag::EclBaseProblem> {
|
|
using type = DummyGradientCalculator<TypeTag>;
|
|
};
|
|
|
|
// Use a custom Newton-Raphson method class for ebos in order to attain more
|
|
// sophisticated update and error computation mechanisms
|
|
template<class TypeTag>
|
|
struct NewtonMethod<TypeTag, TTag::EclBaseProblem> {
|
|
using type = EclNewtonMethod<TypeTag>;
|
|
};
|
|
|
|
// The frequency of writing restart (*.ers) files. This is the number of time steps
|
|
// between writing restart files
|
|
template<class TypeTag>
|
|
struct RestartWritingInterval<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = 0xffffff; // disable
|
|
};
|
|
|
|
// Drift compensation is an experimental feature, i.e., systematic errors in the
|
|
// conservation quantities are only compensated for
|
|
// as default if experimental mode is enabled.
|
|
template<class TypeTag>
|
|
struct EclEnableDriftCompensation<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
|
|
};
|
|
|
|
// By default, we enable the debugging checks if we're compiled in debug mode
|
|
template<class TypeTag>
|
|
struct EnableDebuggingChecks<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
// store temperature (but do not conserve energy, as long as EnableEnergy is false)
|
|
template<class TypeTag>
|
|
struct EnableTemperature<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = true;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct EnableMech<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
// disable all extensions supported by black oil model. this should not really be
|
|
// necessary but it makes things a bit more explicit
|
|
template<class TypeTag>
|
|
struct EnablePolymer<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableSolvent<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableEnergy<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableFoam<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableExtbo<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
template<class TypeTag>
|
|
struct EnableMICP<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// disable thermal flux boundaries by default
|
|
template<class TypeTag>
|
|
struct EnableThermalFluxBoundaries<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
// By default, simulators derived from the EclBaseProblem are production simulators,
|
|
// i.e., experimental features must be explicitly enabled at compile time
|
|
template<class TypeTag>
|
|
struct EnableExperiments<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
template<class TypeTag>
|
|
struct OutputMode<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr auto value = "all";
|
|
};
|
|
// Parameterize equilibration accuracy
|
|
template<class TypeTag>
|
|
struct NumPressurePointsEquil<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr int value = ParserKeywords::EQLDIMS::DEPTH_NODES_P::defaultValue;
|
|
};
|
|
// By default, use implicit pressure in rock compaction
|
|
template<class TypeTag>
|
|
struct ExplicitRockCompaction<TypeTag, TTag::EclBaseProblem> {
|
|
static constexpr bool value = false;
|
|
};
|
|
|
|
} // namespace Opm::Properties
|
|
|
|
#endif // ECL_PROBLEM_PROPERTIES_HH
|