mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 16:51:56 -06:00
343 lines
13 KiB
C++
343 lines
13 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/polymer/GravityColumnSolverPolymer.hpp>
|
|
#include <opm/core/linalg/blas_lapack.h>
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
#include <iterator>
|
|
#include <iostream>
|
|
#include <cmath>
|
|
#include <algorithm>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
template <class FluxModel, class Model>
|
|
GravityColumnSolverPolymer<FluxModel, Model>::GravityColumnSolverPolymer(FluxModel& fmodel,
|
|
const Model& model,
|
|
const UnstructuredGrid& grid,
|
|
const double tol,
|
|
const int maxit)
|
|
: fmodel_(fmodel), model_(model), grid_(grid), tol_(tol), maxit_(maxit)
|
|
{
|
|
}
|
|
|
|
namespace {
|
|
struct ZeroVec
|
|
{
|
|
double operator[](int) const { return 0.0; }
|
|
};
|
|
struct StateWithZeroFlux
|
|
{
|
|
StateWithZeroFlux(std::vector<double>& s, std::vector<double>& c, std::vector<double>& cmax_arg) : sat(s), cpoly(c), cmax(cmax_arg) {}
|
|
const ZeroVec& faceflux() const { return zv; }
|
|
const std::vector<double>& saturation() const { return sat; }
|
|
std::vector<double>& saturation() { return sat; }
|
|
const std::vector<double>& concentration() const { return cpoly; }
|
|
std::vector<double>& concentration() { return cpoly; }
|
|
const std::vector<double>& maxconcentration() const { return cmax; }
|
|
std::vector<double>& maxconcentration() { return cmax; }
|
|
ZeroVec zv;
|
|
std::vector<double>& sat;
|
|
std::vector<double>& cpoly;
|
|
std::vector<double>& cmax;
|
|
};
|
|
|
|
struct Vecs
|
|
{
|
|
Vecs(int sz) : sol(sz, 0.0) {}
|
|
const std::vector<double>& solution() const { return sol; }
|
|
std::vector<double>& writableSolution() { return sol; }
|
|
std::vector<double> sol;
|
|
};
|
|
struct JacSys
|
|
{
|
|
JacSys(int sz) : v(sz) {}
|
|
const Vecs& vector() const { return v; }
|
|
Vecs& vector() { return v; }
|
|
Vecs v;
|
|
typedef std::vector<double> vector_type;
|
|
};
|
|
|
|
struct BandMatrixCoeff
|
|
{
|
|
BandMatrixCoeff(int N, int ku, int kl) : N_(N), ku_(ku), kl_(kl), nrow_(2*kl + ku + 1) {
|
|
}
|
|
|
|
|
|
// compute the position where to store the coefficient of a matrix A_{i,j} (i,j=0,...,N-1)
|
|
// in a array which is sent to the band matrix solver of LAPACK.
|
|
int operator ()(int i, int j) const {
|
|
return kl_ + ku_ + i - j + j*nrow_;
|
|
}
|
|
|
|
const int N_;
|
|
const int ku_;
|
|
const int kl_;
|
|
const int nrow_;
|
|
};
|
|
|
|
} // anon namespace
|
|
|
|
|
|
|
|
/// \param[in] columns for each column col, columns[col]
|
|
/// contains the cells on which to solve the segregation
|
|
/// problem. For each column, its cells must be in a single
|
|
/// vertical column, connected and ordered
|
|
/// (direction doesn't matter).
|
|
template <class FluxModel, class Model>
|
|
void GravityColumnSolverPolymer<FluxModel, Model>::solve(const std::vector<std::vector<int> >& columns,
|
|
const double dt,
|
|
std::vector<double>& s,
|
|
std::vector<double>& c,
|
|
std::vector<double>& cmax
|
|
)
|
|
{
|
|
// Initialize model. These things are done for the whole grid!
|
|
StateWithZeroFlux state(s, c, cmax); // This holds s, c and cmax by reference.
|
|
JacSys sys(2*grid_.number_of_cells);
|
|
std::vector<double> increment(2*grid_.number_of_cells, 0.0);
|
|
fmodel_.initStep(state, grid_, sys);
|
|
|
|
int iter = 0;
|
|
double max_delta = 1e100;
|
|
const double cmax_cell = 2.0*model_.cMax();
|
|
const double tol_c_cell = 1e-2*cmax_cell;
|
|
while (iter < maxit_) {
|
|
fmodel_.initIteration(state, grid_, sys);
|
|
int size = columns.size();
|
|
for(int i = 0; i < size; ++i) {
|
|
solveSingleColumn(columns[i], dt, s, c, cmax, increment);
|
|
}
|
|
for (int cell = 0; cell < grid_.number_of_cells; ++cell) {
|
|
double& s_cell = sys.vector().writableSolution()[2*cell + 0];
|
|
double& c_cell = sys.vector().writableSolution()[2*cell + 1];
|
|
s_cell += increment[2*cell + 0];
|
|
c_cell += increment[2*cell + 1];
|
|
if (s_cell < 0.) {
|
|
double& incr = increment[2*cell + 0];
|
|
s_cell -= incr;
|
|
if (std::fabs(incr) < 1e-2) {
|
|
incr = -s_cell;
|
|
s_cell = 0.;
|
|
} else {
|
|
incr = -s_cell/2.0;
|
|
s_cell = s_cell/2.0;
|
|
}
|
|
}
|
|
if (s_cell > 1.) {
|
|
double& incr = increment[2*cell + 0];
|
|
s_cell -= incr;
|
|
if (std::fabs(incr) < 1e-2) {
|
|
incr = 1. - s_cell;
|
|
s_cell = 1.;
|
|
} else {
|
|
incr = (1 - s_cell)/2.0;
|
|
s_cell = (1 + s_cell)/2.0;
|
|
}
|
|
}
|
|
if (c_cell < 0.) {
|
|
double& incr = increment[2*cell + 1];
|
|
c_cell -= incr;
|
|
if (std::fabs(incr) < tol_c_cell) {
|
|
incr = -c_cell;
|
|
c_cell = 0.;
|
|
} else {
|
|
incr = -c_cell/2.0;
|
|
c_cell = c_cell/2.0;
|
|
}
|
|
}
|
|
if (c_cell > cmax_cell) {
|
|
double& incr = increment[2*cell + 1];
|
|
c_cell -= incr;
|
|
if (std::fabs(incr) < tol_c_cell) {
|
|
incr = cmax_cell - c_cell;
|
|
c_cell = cmax_cell;
|
|
} else {
|
|
incr = (cmax_cell - c_cell)/2.0;
|
|
c_cell = (cmax_cell + c_cell)/2.0;
|
|
}
|
|
}
|
|
|
|
// if (s_cell < 0.) {
|
|
// increment[2*cell + 0] = increment[2*cell + 0] - s_cell;
|
|
// s_cell = 0.;
|
|
// } else if (s_cell > 1.) {
|
|
// increment[2*cell + 0] = increment[2*cell + 0] - s_cell + 1.;
|
|
// s_cell = 1.;
|
|
// }
|
|
// if (c_cell < 0) {
|
|
// increment[2*cell + 1] = increment[2*cell + 1] - c_cell;
|
|
// c_cell = 0.;
|
|
// } else if (c_cell > cmax_cell) {
|
|
// increment[2*cell + 1] = increment[2*cell + 1] - c_cell + cmax_cell;
|
|
// c_cell = cmax_cell;
|
|
// }
|
|
}
|
|
const double maxelem = *std::max_element(increment.begin(), increment.end());
|
|
const double minelem = *std::min_element(increment.begin(), increment.end());
|
|
max_delta = std::max(maxelem, -minelem);
|
|
std::cout << "Iteration " << iter << " max_delta = " << max_delta << std::endl;
|
|
if (max_delta < tol_) {
|
|
break;
|
|
}
|
|
++iter;
|
|
}
|
|
if (max_delta >= tol_) {
|
|
OPM_THROW(std::runtime_error, "Failed to converge!");
|
|
}
|
|
// Finalize.
|
|
// fmodel_.finishIteration(); //
|
|
// finishStep() writes to state, which holds s by reference.
|
|
// This will update the entire grid's state... cmax is updated here.
|
|
fmodel_.finishStep(grid_, sys.vector().solution(), state);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// \param[in] column_cells the cells on which to solve the segregation
|
|
/// problem. Must be in a single vertical column,
|
|
/// and ordered (direction doesn't matter).
|
|
template <class FluxModel, class Model>
|
|
void GravityColumnSolverPolymer<FluxModel, Model>::solveSingleColumn(const std::vector<int>& column_cells,
|
|
const double dt,
|
|
std::vector<double>& s,
|
|
std::vector<double>& c,
|
|
std::vector<double>& cmax,
|
|
std::vector<double>& sol_vec)
|
|
{
|
|
// This is written only to work with SinglePointUpwindTwoPhase,
|
|
// not with arbitrary problem models.
|
|
int col_size = column_cells.size();
|
|
|
|
// if (col_size == 1) {
|
|
// sol_vec[2*column_cells[0] + 0] = 0.0;
|
|
// sol_vec[2*column_cells[0] + 1] = 0.0;
|
|
// return;
|
|
// }
|
|
|
|
StateWithZeroFlux state(s, c, cmax); // This holds s by reference.
|
|
|
|
// Assemble.
|
|
const int kl = 3;
|
|
const int ku = 3;
|
|
const int nrow = 2*kl + ku + 1;
|
|
const int N = 2*col_size; // N unknowns: s and c for each cell.
|
|
std::vector<double> hm(nrow*N, 0.0); // band matrix with 3 upper and 3 lower diagonals.
|
|
std::vector<double> rhs(N, 0.0);
|
|
const BandMatrixCoeff bmc(N, ku, kl);
|
|
|
|
|
|
for (int ci = 0; ci < col_size; ++ci) {
|
|
std::vector<double> F(2, 0.);
|
|
std::vector<double> dFd1(4, 0.);
|
|
std::vector<double> dFd2(4, 0.);
|
|
std::vector<double> dF(4, 0.);
|
|
const int cell = column_cells[ci];
|
|
const int prev_cell = (ci == 0) ? -999 : column_cells[ci - 1];
|
|
const int next_cell = (ci == col_size - 1) ? -999 : column_cells[ci + 1];
|
|
// model_.initResidual(cell, F);
|
|
for (int j = grid_.cell_facepos[cell]; j < grid_.cell_facepos[cell+1]; ++j) {
|
|
const int face = grid_.cell_faces[j];
|
|
const int c1 = grid_.face_cells[2*face + 0];
|
|
const int c2 = grid_.face_cells[2*face + 1];
|
|
if (c1 == prev_cell || c2 == prev_cell || c1 == next_cell || c2 == next_cell) {
|
|
F.assign(2, 0.);
|
|
dFd1.assign(4, 0.);
|
|
dFd2.assign(4, 0.);
|
|
fmodel_.fluxConnection(state, grid_, dt, cell, face, &F[0], &dFd1[0], &dFd2[0]);
|
|
if (c1 == prev_cell || c2 == prev_cell) {
|
|
hm[bmc(2*ci + 0, 2*(ci - 1) + 0)] += dFd2[0];
|
|
hm[bmc(2*ci + 0, 2*(ci - 1) + 1)] += dFd2[1];
|
|
hm[bmc(2*ci + 1, 2*(ci - 1) + 0)] += dFd2[2];
|
|
hm[bmc(2*ci + 1, 2*(ci - 1) + 1)] += dFd2[3];
|
|
} else {
|
|
assert(c1 == next_cell || c2 == next_cell);
|
|
hm[bmc(2*ci + 0, 2*(ci + 1) + 0)] += dFd2[0];
|
|
hm[bmc(2*ci + 0, 2*(ci + 1) + 1)] += dFd2[1];
|
|
hm[bmc(2*ci + 1, 2*(ci + 1) + 0)] += dFd2[2];
|
|
hm[bmc(2*ci + 1, 2*(ci + 1) + 1)] += dFd2[3];
|
|
}
|
|
hm[bmc(2*ci + 0, 2*ci + 0)] += dFd1[0];
|
|
hm[bmc(2*ci + 0, 2*ci + 1)] += dFd1[1];
|
|
hm[bmc(2*ci + 1, 2*ci + 0)] += dFd1[2];
|
|
hm[bmc(2*ci + 1, 2*ci + 1)] += dFd1[3];
|
|
|
|
rhs[2*ci + 0] += F[0];
|
|
rhs[2*ci + 1] += F[1];
|
|
}
|
|
}
|
|
F.assign(2, 0.);
|
|
dF.assign(4, 0.);
|
|
fmodel_.accumulation(grid_, cell, &F[0], &dF[0]);
|
|
hm[bmc(2*ci + 0, 2*ci + 0)] += dF[0];
|
|
hm[bmc(2*ci + 0, 2*ci + 1)] += dF[1];
|
|
hm[bmc(2*ci + 1, 2*ci + 0)] += dF[2];
|
|
if (std::abs(dF[3]) < 1e-12) {
|
|
hm[bmc(2*ci + 1, 2*ci + 1)] += 1e-12;
|
|
} else {
|
|
hm[bmc(2*ci + 1, 2*ci + 1)] += dF[3];
|
|
}
|
|
|
|
rhs[2*ci + 0] += F[0];
|
|
rhs[2*ci + 1] += F[1];
|
|
|
|
}
|
|
// model_.sourceTerms(); // Not needed
|
|
// Solve.
|
|
const int num_rhs = 1;
|
|
int info = 0;
|
|
std::vector<int> ipiv(N, 0);
|
|
// Solution will be written to rhs.
|
|
dgbsv_(&N, &kl, &ku, &num_rhs, &hm[0], &nrow, &ipiv[0], &rhs[0], &N, &info);
|
|
if (info != 0) {
|
|
std::cerr << "Failed column cells: ";
|
|
std::copy(column_cells.begin(), column_cells.end(), std::ostream_iterator<int>(std::cerr, " "));
|
|
std::cerr << "\n";
|
|
OPM_THROW(std::runtime_error, "Lapack reported error in dgtsv: " << info);
|
|
}
|
|
for (int ci = 0; ci < col_size; ++ci) {
|
|
sol_vec[2*column_cells[ci] + 0] = -rhs[2*ci + 0];
|
|
sol_vec[2*column_cells[ci] + 1] = -rhs[2*ci + 1];
|
|
}
|
|
}
|
|
|
|
} // namespace Opm
|