opm-simulators/opm/polymer/TransportSolverTwophaseCompressiblePolymer.hpp
Arne Morten Kvarving 2da361414e changed: relocate the remaining files in opm/core/utility
move to opm/common/utility/numeric
2018-01-30 16:33:46 +01:00

237 lines
9.5 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED
#define OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED
#include <opm/polymer/PolymerProperties.hpp>
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
#include <opm/common/utility/numeric/linearInterpolation.hpp>
#include <vector>
#include <list>
struct UnstructuredGrid;
namespace {
class ResSOnCurve;
class ResCOnCurve;
}
namespace Opm
{
class BlackoilPropertiesInterface;
/// Implements a reordering transport solver for incompressible two-phase flow
/// with polymer in the water phase.
/// \TODO Include permeability reduction effect.
class TransportSolverTwophaseCompressiblePolymer : public ReorderSolverInterface
{
public:
enum SingleCellMethod { Bracketing, Newton, NewtonC, Gradient};
enum GradientMethod { Analytic, FinDif }; // Analytic is chosen (hard-coded)
/// Construct solver.
/// \param[in] grid A 2d or 3d grid.
/// \param[in] props Rock and fluid properties.
/// \param[in] polyprops Polymer properties.
/// \param[in] rock_comp Rock compressibility properties
/// \param[in] method Bracketing: solve for c in outer loop, s in inner loop,
/// each solve being bracketed for robustness.
/// Newton: solve simultaneously for c and s with Newton's method.
/// (using gradient variant and bracketing as fallbacks).
/// \param[in] tol Tolerance used in the solver.
/// \param[in] maxit Maximum number of non-linear iterations used.
TransportSolverTwophaseCompressiblePolymer(const UnstructuredGrid& grid,
const BlackoilPropertiesInterface& props,
const PolymerProperties& polyprops,
const SingleCellMethod method,
const double tol,
const int maxit);
/// Set the preferred method, Bracketing or Newton.
void setPreferredMethod(SingleCellMethod method);
/// Solve for saturation, concentration and cmax at next timestep.
/// Using implicit Euler scheme, reordered.
/// \param[in] darcyflux Array of signed face fluxes.
/// \param[in] initial_pressure Array with pressure at start of timestep.
/// \param[in] pressure Array with pressure.
/// \param[in] temperature Array with temperature.
/// \param[in] porevolume0 Array with pore volume at start of timestep.
/// \param[in] porevolume Array with pore volume.
/// \param[in] source Transport source term, to be interpreted by sign:
/// (+) Inflow, value is first phase flow (water)
/// per second, in *surface* volumes (unlike the
/// incompressible version).
/// (-) Outflow, value is total flow of all phases
/// per second, in reservoir volumes.
/// \param[in] polymer_inflow_c Array of inflow polymer concentrations per cell.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volumes.
/// \param[in, out] concentration Polymer concentration.
/// \param[in, out] cmax Highest concentration that has occured in a given cell.
void solve(const double* darcyflux,
const std::vector<double>& initial_pressure,
const std::vector<double>& pressure,
const std::vector<double>& temperature,
const double* porevolume0,
const double* porevolume,
const double* source,
const double* polymer_inflow_c,
const double dt,
std::vector<double>& saturation,
std::vector<double>& surfacevol,
std::vector<double>& concentration,
std::vector<double>& cmax);
/// Initialise quantities needed by gravity solver.
/// \param[in] grav Gravity vector
void initGravity(const double* grav);
/// Solve for gravity segregation.
/// This uses a column-wise nonlinear Gauss-Seidel approach.
/// It assumes that the input columns contain cells in a single
/// vertical stack, that do not interact with other columns (for
/// gravity segregation.
/// \param[in] columns Vector of cell-columns.
/// \param[in] dt Time step.
/// \param[in, out] saturation Phase saturations.
/// \param[in, out] surfacevol Surface volumes.
/// \param[in, out] concentration Polymer concentration.
/// \param[in, out] cmax Highest concentration that has occured in a given cell.
void solveGravity(const std::vector<std::vector<int> >& columns,
const double dt,
std::vector<double>& saturation,
std::vector<double>& surfacevol,
std::vector<double>& concentration,
std::vector<double>& cmax);
private:
const UnstructuredGrid& grid_;
const BlackoilPropertiesInterface& props_;
const PolymerProperties& polyprops_;
const double* darcyflux_; // one flux per grid face
const double* porevolume0_; // one volume per cell
const double* porevolume_; // one volume per cell
const double* source_; // one source per cell
const double* polymer_inflow_c_;
double dt_;
double tol_;
double maxit_;
SingleCellMethod method_;
double adhoc_safety_;
std::vector<double> saturation_; // one per cell, only water saturation!
std::vector<int> allcells_;
double* concentration_;
double* cmax_;
std::vector<double> fractionalflow_; // one per cell
std::vector<double> mc_; // one per cell
std::vector<double> visc_; // viscosity (without polymer, for given pressure)
std::vector<double> A_;
std::vector<double> A0_;
std::vector<double> smin_;
std::vector<double> smax_;
// For gravity segregation.
const double* gravity_;
std::vector<double> trans_;
std::vector<double> density_;
std::vector<double> gravflux_;
std::vector<double> mob_;
std::vector<double> cmax0_;
// For gravity segregation, column variables
std::vector<double> s0_;
std::vector<double> c0_;
// Storing the upwind and downwind graphs for experiments.
std::vector<int> ia_upw_;
std::vector<int> ja_upw_;
std::vector<int> ia_downw_;
std::vector<int> ja_downw_;
struct ResidualC;
struct ResidualS;
class ResidualCGrav;
class ResidualSGrav;
class ResidualEquation;
class ResSOnCurve;
class ResCOnCurve;
friend class TransportSolverTwophaseCompressiblePolymer::ResidualEquation;
friend class TransportSolverTwophaseCompressiblePolymer::ResSOnCurve;
friend class TransportSolverTwophaseCompressiblePolymer::ResCOnCurve;
virtual void solveSingleCell(const int cell);
virtual void solveMultiCell(const int num_cells, const int* cells);
void solveSingleCellBracketing(int cell);
void solveSingleCellNewton(int cell, bool use_sc, bool use_explicit_step = false);
void solveSingleCellGradient(int cell);
void solveSingleCellGravity(const std::vector<int>& cells,
const int pos,
const double* gravflux);
int solveGravityColumn(const std::vector<int>& cells);
void initGravityDynamic();
void fracFlow(double s, double c, double cmax, int cell, double& ff) const;
void fracFlowWithDer(double s, double c, double cmax, int cell, double& ff,
double* dff_dsdc) const;
void fracFlowBoth(double s, double c, double cmax, int cell, double& ff,
double* dff_dsdc, bool if_with_der) const;
void computeMc(double c, double& mc) const;
void computeMcWithDer(double c, double& mc, double& dmc_dc) const;
void mobility(double s, double c, int cell, double* mob) const;
void scToc(const double* x, double* x_c) const;
#ifdef PROFILING
class Newton_Iter {
public:
bool res_s;
int cell;
double s;
double c;
Newton_Iter(bool res_s_val, int cell_val, double s_val, double c_val) {
res_s = res_s_val;
cell = cell_val;
s = s_val;
c = c_val;
}
};
std::list<Newton_Iter> res_counts;
#endif
};
} // namespace Opm
#endif // OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED