mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-15 16:31:58 -06:00
2da361414e
move to opm/common/utility/numeric
237 lines
9.5 KiB
C++
237 lines
9.5 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED
|
|
#define OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED
|
|
|
|
#include <opm/polymer/PolymerProperties.hpp>
|
|
#include <opm/core/transport/reorder/ReorderSolverInterface.hpp>
|
|
#include <opm/common/utility/numeric/linearInterpolation.hpp>
|
|
#include <vector>
|
|
#include <list>
|
|
|
|
struct UnstructuredGrid;
|
|
|
|
namespace {
|
|
class ResSOnCurve;
|
|
class ResCOnCurve;
|
|
}
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
class BlackoilPropertiesInterface;
|
|
|
|
/// Implements a reordering transport solver for incompressible two-phase flow
|
|
/// with polymer in the water phase.
|
|
/// \TODO Include permeability reduction effect.
|
|
class TransportSolverTwophaseCompressiblePolymer : public ReorderSolverInterface
|
|
{
|
|
public:
|
|
|
|
enum SingleCellMethod { Bracketing, Newton, NewtonC, Gradient};
|
|
enum GradientMethod { Analytic, FinDif }; // Analytic is chosen (hard-coded)
|
|
|
|
/// Construct solver.
|
|
/// \param[in] grid A 2d or 3d grid.
|
|
/// \param[in] props Rock and fluid properties.
|
|
/// \param[in] polyprops Polymer properties.
|
|
/// \param[in] rock_comp Rock compressibility properties
|
|
/// \param[in] method Bracketing: solve for c in outer loop, s in inner loop,
|
|
/// each solve being bracketed for robustness.
|
|
/// Newton: solve simultaneously for c and s with Newton's method.
|
|
/// (using gradient variant and bracketing as fallbacks).
|
|
/// \param[in] tol Tolerance used in the solver.
|
|
/// \param[in] maxit Maximum number of non-linear iterations used.
|
|
TransportSolverTwophaseCompressiblePolymer(const UnstructuredGrid& grid,
|
|
const BlackoilPropertiesInterface& props,
|
|
const PolymerProperties& polyprops,
|
|
const SingleCellMethod method,
|
|
const double tol,
|
|
const int maxit);
|
|
|
|
/// Set the preferred method, Bracketing or Newton.
|
|
void setPreferredMethod(SingleCellMethod method);
|
|
|
|
/// Solve for saturation, concentration and cmax at next timestep.
|
|
/// Using implicit Euler scheme, reordered.
|
|
/// \param[in] darcyflux Array of signed face fluxes.
|
|
/// \param[in] initial_pressure Array with pressure at start of timestep.
|
|
/// \param[in] pressure Array with pressure.
|
|
/// \param[in] temperature Array with temperature.
|
|
/// \param[in] porevolume0 Array with pore volume at start of timestep.
|
|
/// \param[in] porevolume Array with pore volume.
|
|
/// \param[in] source Transport source term, to be interpreted by sign:
|
|
/// (+) Inflow, value is first phase flow (water)
|
|
/// per second, in *surface* volumes (unlike the
|
|
/// incompressible version).
|
|
/// (-) Outflow, value is total flow of all phases
|
|
/// per second, in reservoir volumes.
|
|
/// \param[in] polymer_inflow_c Array of inflow polymer concentrations per cell.
|
|
/// \param[in] dt Time step.
|
|
/// \param[in, out] saturation Phase saturations.
|
|
/// \param[in, out] surfacevol Surface volumes.
|
|
/// \param[in, out] concentration Polymer concentration.
|
|
/// \param[in, out] cmax Highest concentration that has occured in a given cell.
|
|
void solve(const double* darcyflux,
|
|
const std::vector<double>& initial_pressure,
|
|
const std::vector<double>& pressure,
|
|
const std::vector<double>& temperature,
|
|
const double* porevolume0,
|
|
const double* porevolume,
|
|
const double* source,
|
|
const double* polymer_inflow_c,
|
|
const double dt,
|
|
std::vector<double>& saturation,
|
|
std::vector<double>& surfacevol,
|
|
std::vector<double>& concentration,
|
|
std::vector<double>& cmax);
|
|
|
|
/// Initialise quantities needed by gravity solver.
|
|
/// \param[in] grav Gravity vector
|
|
void initGravity(const double* grav);
|
|
|
|
/// Solve for gravity segregation.
|
|
/// This uses a column-wise nonlinear Gauss-Seidel approach.
|
|
/// It assumes that the input columns contain cells in a single
|
|
/// vertical stack, that do not interact with other columns (for
|
|
/// gravity segregation.
|
|
/// \param[in] columns Vector of cell-columns.
|
|
/// \param[in] dt Time step.
|
|
/// \param[in, out] saturation Phase saturations.
|
|
/// \param[in, out] surfacevol Surface volumes.
|
|
/// \param[in, out] concentration Polymer concentration.
|
|
/// \param[in, out] cmax Highest concentration that has occured in a given cell.
|
|
void solveGravity(const std::vector<std::vector<int> >& columns,
|
|
const double dt,
|
|
std::vector<double>& saturation,
|
|
std::vector<double>& surfacevol,
|
|
std::vector<double>& concentration,
|
|
std::vector<double>& cmax);
|
|
|
|
|
|
|
|
|
|
|
|
private:
|
|
|
|
const UnstructuredGrid& grid_;
|
|
const BlackoilPropertiesInterface& props_;
|
|
const PolymerProperties& polyprops_;
|
|
const double* darcyflux_; // one flux per grid face
|
|
const double* porevolume0_; // one volume per cell
|
|
const double* porevolume_; // one volume per cell
|
|
const double* source_; // one source per cell
|
|
const double* polymer_inflow_c_;
|
|
double dt_;
|
|
double tol_;
|
|
double maxit_;
|
|
SingleCellMethod method_;
|
|
double adhoc_safety_;
|
|
|
|
std::vector<double> saturation_; // one per cell, only water saturation!
|
|
std::vector<int> allcells_;
|
|
double* concentration_;
|
|
double* cmax_;
|
|
std::vector<double> fractionalflow_; // one per cell
|
|
std::vector<double> mc_; // one per cell
|
|
std::vector<double> visc_; // viscosity (without polymer, for given pressure)
|
|
std::vector<double> A_;
|
|
std::vector<double> A0_;
|
|
std::vector<double> smin_;
|
|
std::vector<double> smax_;
|
|
|
|
// For gravity segregation.
|
|
const double* gravity_;
|
|
std::vector<double> trans_;
|
|
std::vector<double> density_;
|
|
std::vector<double> gravflux_;
|
|
std::vector<double> mob_;
|
|
std::vector<double> cmax0_;
|
|
|
|
// For gravity segregation, column variables
|
|
std::vector<double> s0_;
|
|
std::vector<double> c0_;
|
|
|
|
// Storing the upwind and downwind graphs for experiments.
|
|
std::vector<int> ia_upw_;
|
|
std::vector<int> ja_upw_;
|
|
std::vector<int> ia_downw_;
|
|
std::vector<int> ja_downw_;
|
|
|
|
struct ResidualC;
|
|
struct ResidualS;
|
|
|
|
class ResidualCGrav;
|
|
class ResidualSGrav;
|
|
|
|
class ResidualEquation;
|
|
class ResSOnCurve;
|
|
class ResCOnCurve;
|
|
|
|
friend class TransportSolverTwophaseCompressiblePolymer::ResidualEquation;
|
|
friend class TransportSolverTwophaseCompressiblePolymer::ResSOnCurve;
|
|
friend class TransportSolverTwophaseCompressiblePolymer::ResCOnCurve;
|
|
|
|
|
|
virtual void solveSingleCell(const int cell);
|
|
virtual void solveMultiCell(const int num_cells, const int* cells);
|
|
void solveSingleCellBracketing(int cell);
|
|
void solveSingleCellNewton(int cell, bool use_sc, bool use_explicit_step = false);
|
|
void solveSingleCellGradient(int cell);
|
|
void solveSingleCellGravity(const std::vector<int>& cells,
|
|
const int pos,
|
|
const double* gravflux);
|
|
int solveGravityColumn(const std::vector<int>& cells);
|
|
|
|
void initGravityDynamic();
|
|
|
|
void fracFlow(double s, double c, double cmax, int cell, double& ff) const;
|
|
void fracFlowWithDer(double s, double c, double cmax, int cell, double& ff,
|
|
double* dff_dsdc) const;
|
|
void fracFlowBoth(double s, double c, double cmax, int cell, double& ff,
|
|
double* dff_dsdc, bool if_with_der) const;
|
|
void computeMc(double c, double& mc) const;
|
|
void computeMcWithDer(double c, double& mc, double& dmc_dc) const;
|
|
void mobility(double s, double c, int cell, double* mob) const;
|
|
void scToc(const double* x, double* x_c) const;
|
|
#ifdef PROFILING
|
|
class Newton_Iter {
|
|
public:
|
|
bool res_s;
|
|
int cell;
|
|
double s;
|
|
double c;
|
|
|
|
Newton_Iter(bool res_s_val, int cell_val, double s_val, double c_val) {
|
|
res_s = res_s_val;
|
|
cell = cell_val;
|
|
s = s_val;
|
|
c = c_val;
|
|
}
|
|
};
|
|
|
|
std::list<Newton_Iter> res_counts;
|
|
#endif
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // OPM_TRANSPORTSOLVERTWOPHASECOMPRESSIBLEPOLYMER_HEADER_INCLUDED
|