opm-simulators/opm/autodiff/RateConverter.hpp
2015-11-13 15:46:45 +01:00

819 lines
29 KiB
C++

/*
Copyright 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014, 2015 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#define OPM_RATECONVERTER_HPP_HEADER_INCLUDED
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/utility/RegionMapping.hpp>
#include <opm/core/linalg/ParallelIstlInformation.hpp>
#include <Eigen/Core>
#include <algorithm>
#include <cmath>
#include <memory>
#include <stdexcept>
#include <type_traits>
#include <unordered_map>
#include <utility>
#include <vector>
/**
* \file
* Facility for converting component rates at surface conditions to
* phase (voidage) rates at reservoir conditions.
*
* This uses the average hydrocarbon pressure to define fluid
* properties. The facility is intended to support Reservoir Voidage
* rates only ('RESV').
*/
namespace Opm {
namespace RateConverter {
/**
* Convenience tools for implementing the rate conversion
* facility.
*/
namespace Details {
namespace Select {
template <class RegionID, bool>
struct RegionIDParameter
{
using type =
typename std::remove_reference<RegionID>::type &;
};
template <class RegionID>
struct RegionIDParameter<RegionID, true>
{
using type = RegionID;
};
} // Select
/**
* \brief Computes the temperature, pressure, and counter increment.
*
* In a parallel run only cells owned contribute to the cell average.
* \tparam is_parallel Whether this is a parallel run.
*/
template<bool is_parallel>
struct AverageIncrementCalculator
{
/**
* \brief Computes the temperature, pressure, and counter increment.
* \param pressure The pressure.
* \param temperature The temperature.
* \param cell The current cell index.
* \param ownership A vector indicating whether a cell is owned
* by this process (value 1), or not (value 0).
* \param cell The cell index.
*/
std::tuple<double, double, int>
operator()(const std::vector<double>& pressure,
const std::vector<double>& temperature,
const std::vector<double>& ownership,
std::size_t cell){
if ( ownership[cell] )
{
return std::make_tuple(pressure[cell],
temperature[cell], 1);
}
else
{
return std::make_tuple(0, 0, 0);
}
}
};
template<>
struct AverageIncrementCalculator<false>
{
std::tuple<double, double, int>
operator()(const std::vector<double>& pressure,
const std::vector<double>& temperature,
const std::vector<double>&,
std::size_t cell){
return std::make_tuple(pressure[cell],
temperature[cell], 1);
}
};
/**
* Provide mapping from Region IDs to user-specified collection
* of per-region attributes.
*
* \tparam RegionId Region identifier type. Must be hashable by
* \code std::hash<> \endcode. Typically a built-in integer
* type--e.g., \c int.
*
* \tparam Attributes User-defined type that represents
* collection of attributes that have meaning in a per-region
* aggregate sense. Must be copy-constructible.
*/
template <typename RegionId, class Attributes>
class RegionAttributes
{
public:
/**
* Expose \c RegionId as a vocabulary type for use in query
* methods.
*/
using RegionID =
typename Select::RegionIDParameter
<RegionId, std::is_integral<RegionId>::value>::type;
/**
* Constructor.
*
* \tparam RMap Class type that implements the RegionMapping
* protocol. Typically an instantiation of \code
* Opm::RegionMapping<> \endcode.
*
* \param[in] rmap Specific region mapping that provides
* reverse lookup from regions to cells.
*
* \param[in] attr Pre-constructed initialiser for \c
* Attributes.
*/
template <class RMap>
RegionAttributes(const RMap& rmap,
const Attributes& attr)
{
using VT = typename AttributeMap::value_type;
for (const auto& r : rmap.activeRegions()) {
auto v = std::unique_ptr<Value>(new Value(attr));
const auto stat = attr_.insert(VT(r, std::move(v)));
if (stat.second) {
// New value inserted.
const auto& cells = rmap.cells(r);
assert (! cells.empty());
// Region's representative cell.
stat.first->second->cell_ = cells[0];
}
}
}
/**
* Retrieve representative cell in region.
*
* \param[in] reg Specific region.
*
* \return Representative cell in region \p reg.
*/
int cell(const RegionID reg) const
{
return this->find(reg).cell_;
}
/**
* Request read-only access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-only access to region \p reg's per-region
* attributes.
*/
const Attributes& attributes(const RegionID reg) const
{
return this->find(reg).attr_;
}
/**
* Request modifiable access to region's attributes.
*
* \param[in] reg Specific region.
*
* \return Read-write access to region \p reg's per-region
* attributes.
*/
Attributes& attributes(const RegionID reg)
{
return this->find(reg).attr_;
}
private:
/**
* Aggregate per-region attributes along with region's
* representative cell.
*/
struct Value {
Value(const Attributes& attr)
: attr_(attr)
, cell_(-1)
{}
Attributes attr_;
int cell_;
};
using ID =
typename std::remove_reference<RegionId>::type;
using AttributeMap =
std::unordered_map<ID, std::unique_ptr<Value>>;
AttributeMap attr_;
/**
* Read-only access to region's properties.
*/
const Value& find(const RegionID reg) const
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
/**
* Read-write access to region's properties.
*/
Value& find(const RegionID reg)
{
const auto& i = attr_.find(reg);
if (i == attr_.end()) {
throw std::invalid_argument("Unknown region ID");
}
return *i->second;
}
};
/**
* Convenience functions for querying presence/absence of
* active phases.
*/
namespace PhaseUsed {
/**
* Active water predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not water is an active phase.
*/
inline bool
water(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Aqua ] != 0;
}
/**
* Active oil predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not oil is an active phase.
*/
inline bool
oil(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Liquid ] != 0;
}
/**
* Active gas predicate.
*
* \param[in] pu Active phase object.
*
* \return Whether or not gas is an active phase.
*/
inline bool
gas(const PhaseUsage& pu)
{
return pu.phase_used[ BlackoilPhases::Vapour ] != 0;
}
} // namespace PhaseUsed
/**
* Convenience functions for querying numerical IDs
* ("positions") of active phases.
*/
namespace PhasePos {
/**
* Numerical ID of active water phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of water if
* active, -1 if not.
*/
inline int
water(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::water(pu)) {
p = pu.phase_pos[ BlackoilPhases::Aqua ];
}
return p;
}
/**
* Numerical ID of active oil phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of oil if
* active, -1 if not.
*/
inline int
oil(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::oil(pu)) {
p = pu.phase_pos[ BlackoilPhases::Liquid ];
}
return p;
}
/**
* Numerical ID of active gas phase.
*
* \param[in] pu Active phase object.
*
* \return Non-negative index/position of gas if
* active, -1 if not.
*/
inline int
gas(const PhaseUsage& pu)
{
int p = -1;
if (PhaseUsed::gas(pu)) {
p = pu.phase_pos[ BlackoilPhases::Vapour ];
}
return p;
}
} // namespace PhasePos
} // namespace Details
/**
* Convert component rates at surface conditions to phase
* (voidage) rates at reservoir conditions.
*
* The conversion uses fluid properties evaluated at average
* hydrocarbon pressure in regions or field.
*
* \tparam Property Fluid property object. Expected to
* feature the formation volume factor functions of the
* BlackoilPropsAdInterface.
*
* \tparam Region Type of a forward region mapping. Expected
* to provide indexed access through \code operator[]()
* \endcode as well as inner types \c value_type, \c
* size_type, and \c const_iterator. Typically \code
* std::vector<int> \endcode.
*/
template <class Property, class Region>
class SurfaceToReservoirVoidage {
public:
/**
* Constructor.
*
* \param[in] props Fluid property object.
*
* \param[in] region Forward region mapping. Often
* corresponds to the "FIPNUM" mapping of an ECLIPSE input
* deck.
*/
SurfaceToReservoirVoidage(const Property& props,
const Region& region)
: props_(props)
, rmap_ (region)
, attr_ (rmap_, Attributes(props_.numPhases()))
{}
/**
* Compute average hydrocarbon pressure and maximum
* dissolution and evaporation at average hydrocarbon
* pressure in all regions in field.
*
* Fluid properties are evaluated at average hydrocarbon
* pressure for purpose of conversion from surface rate to
* reservoir voidage rate.
*
* \param[in] state Dynamic reservoir state.
* \param[in] any The information and communication utilities
* about/of the parallelization. in any parallel
* it wraps a ParallelISTLInformation. Parameter
* is optional.
*/
void
defineState(const BlackoilState& state,
const boost::any& info = boost::any())
{
#if HAVE_MPI
if( info.type() == typeid(ParallelISTLInformation) )
{
const auto& ownership =
boost::any_cast<const ParallelISTLInformation&>(info)
.updateOwnerMask(state.pressure());
calcAverages<true>(state, info, ownership);
}
else
#endif
{
std::vector<double> dummyOwnership; // not actually used
calcAverages<false>(state, info, dummyOwnership);
}
calcRmax();
}
/**
* Region identifier.
*
* Integral type.
*/
typedef typename RegionMapping<Region>::RegionId RegionId;
/**
* Compute coefficients for surface-to-reservoir voidage
* conversion.
*
* \tparam Input Type representing contiguous collection
* of component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \tparam Coeff Type representing contiguous collection
* of surface-to-reservoir conversion coefficients. Must
* support direct indexing through \code operator[]()
* \endcode.
*
* \param[in] in Single tuple of active component rates at
* surface conditions.
*
* \param[in] r Fluid-in-place region to which the
* component rates correspond.
*
* \param[out] coeff Surface-to-reservoir conversion
* coefficients for all active phases, corresponding to
* input rates \c in in region \c r.
*/
template <class Input,
class Coeff>
void
calcCoeff(const Input& in, const RegionId r, Coeff& coeff) const
{
using V = typename Property::V;
const auto& pu = props_.phaseUsage();
const auto& ra = attr_.attributes(r);
const auto p = this->constant(ra.pressure);
const auto T = this->constant(ra.temperature);
const auto c = this->getRegCell(r);
const int iw = Details::PhasePos::water(pu);
const int io = Details::PhasePos::oil (pu);
const int ig = Details::PhasePos::gas (pu);
std::fill(& coeff[0], & coeff[0] + props_.numPhases(), 0.0);
if (Details::PhaseUsed::water(pu)) {
// q[w]_r = q[w]_s / bw
const V bw = props_.bWat(p, T, c).value();
coeff[iw] = 1.0 / bw(0);
}
const Miscibility& m = calcMiscibility(in, r);
// Determinant of 'R' matrix
const double detR = 1.0 - (m.rs(0) * m.rv(0));
if (Details::PhaseUsed::oil(pu)) {
// q[o]_r = 1/(bo * (1 - rs*rv)) * (q[o]_s - rv*q[g]_s)
const auto rs = this->constant(m.rs);
const V bo = props_.bOil(p, T, rs, m.cond, c).value();
const double den = bo(0) * detR;
coeff[io] += 1.0 / den;
if (Details::PhaseUsed::gas(pu)) {
coeff[ig] -= m.rv(0) / den;
}
}
if (Details::PhaseUsed::gas(pu)) {
// q[g]_r = 1/(bg * (1 - rs*rv)) * (q[g]_s - rs*q[o]_s)
const auto rv = this->constant(m.rv);
const V bg = props_.bGas(p, T, rv, m.cond, c).value();
const double den = bg(0) * detR;
coeff[ig] += 1.0 / den;
if (Details::PhaseUsed::oil(pu)) {
coeff[io] -= m.rs(0) / den;
}
}
}
private:
/**
* Fluid property object.
*/
const Property& props_;
/**
* "Fluid-in-place" region mapping (forward and reverse).
*/
const RegionMapping<Region> rmap_;
/**
* Derived property attributes for each active region.
*/
struct Attributes {
Attributes(const int np)
: pressure (0.0)
, temperature(0.0)
, Rmax (Eigen::ArrayXd::Zero(np, 1))
{}
double pressure;
double temperature;
Eigen::ArrayXd Rmax;
};
Details::RegionAttributes<RegionId, Attributes> attr_;
/**
* Aggregate structure defining fluid miscibility
* conditions in single region with particular input
* surface rates.
*/
struct Miscibility {
Miscibility()
: rs (1)
, rv (1)
, cond(1)
{
rs << 0.0;
rv << 0.0;
}
/**
* Dissolved gas-oil ratio at particular component oil
* and gas rates at surface conditions.
*
* Limited by "RSmax" at average hydrocarbon pressure
* in region.
*/
typename Property::V rs;
/**
* Evaporated oil-gas ratio at particular component oil
* and gas rates at surface conditions.
*
* Limited by "RVmax" at average hydrocarbon pressure
* in region.
*/
typename Property::V rv;
/**
* Fluid condition in representative region cell.
*
* Needed for purpose of FVF evaluation.
*/
std::vector<PhasePresence> cond;
};
/**
* Compute average hydrocarbon pressure and temperatures in all
* regions.
*
* \param[in] state Dynamic reservoir state.
* \param[in] info The information and communication utilities
* about/of the parallelization.
* \param[in] ownership In a parallel run this is vector containing
* 1 for every owned unknown, zero otherwise.
* Not used in a sequential run.
* \tparam is_parallel True if the run is parallel. In this case
* info has to contain a ParallelISTLInformation
* object.
*/
template<bool is_parallel>
void
calcAverages(const BlackoilState& state, const boost::any& info,
const std::vector<double>& ownerShip)
{
const auto& press = state.pressure();
const auto& temp = state.temperature();
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
auto& p = ra.pressure;
auto& T = ra.temperature;
std::size_t n = 0;
p = T = 0.0;
for (const auto& cell : rmap_.cells(reg)) {
auto increment = Details::
AverageIncrementCalculator<is_parallel>()(press, temp,
ownerShip,
cell);
p += std::get<0>(increment);
T += std::get<1>(increment);
n += std::get<2>(increment);
}
std::size_t global_n = n;
double global_p = p;
double global_T = T;
#if HAVE_MPI
if ( is_parallel )
{
const auto& real_info = boost::any_cast<const ParallelISTLInformation&>(info);
global_n = real_info.communicator().sum(n);
global_p = real_info.communicator().sum(p);
global_T = real_info.communicator().sum(T);
}
#endif
p = global_p / global_n;
T = global_T / global_n;
}
}
/**
* Compute maximum dissolution and evaporation ratios at
* average hydrocarbon pressure.
*
* Uses the pressure value computed by averagePressure()
* and must therefore be called *after* that method.
*/
void
calcRmax()
{
const PhaseUsage& pu = props_.phaseUsage();
if (Details::PhaseUsed::oil(pu) &&
Details::PhaseUsed::gas(pu))
{
const Eigen::ArrayXd::Index
io = Details::PhasePos::oil(pu),
ig = Details::PhasePos::gas(pu);
// Note: Intentionally does not take capillary
// pressure into account. This facility uses the
// average *hydrocarbon* pressure rather than
// average phase pressure.
for (const auto& reg : rmap_.activeRegions()) {
auto& ra = attr_.attributes(reg);
const auto c = this->getRegCell(reg);
const auto p = this->constant(ra.pressure);
const auto T = this->constant(ra.temperature);
auto& Rmax = ra.Rmax;
Rmax.row(io) = props_.rsSat(p, T, c).value();
Rmax.row(ig) = props_.rvSat(p, T, c).value();
}
}
}
/**
* Compute fluid conditions in particular region for a
* given set of component rates at surface conditions.
*
* \tparam Input Type representing collection of (active)
* component rates at surface conditions. Must support
* direct indexing through \code operator[]()\endcode.
*
* \param[in] in Single tuple of active component rates at
* surface conditions.
*
* \param[in] r Fluid-in-place region to which the
* component rates correspond.
*
* \return Fluid conditions in region \c r corresponding
* to surface component rates \c in.
*/
template <class Input>
Miscibility
calcMiscibility(const Input& in, const RegionId r) const
{
const auto& pu = props_.phaseUsage();
const auto& attr = attr_.attributes(r);
const int io = Details::PhasePos::oil(pu);
const int ig = Details::PhasePos::gas(pu);
Miscibility m;
PhasePresence& cond = m.cond[0];
if (Details::PhaseUsed::water(pu)) {
cond.setFreeWater();
}
if (Details::PhaseUsed::oil(pu)) {
cond.setFreeOil();
if (Details::PhaseUsed::gas(pu)) {
const double rsmax = attr.Rmax(io);
const double rs =
(0.0 < std::abs(in[io]))
? in[ig] / in[io]
: (0.0 < std::abs(in[ig])) ? rsmax : 0.0;
if (rsmax < rs) {
cond.setFreeGas();
}
m.rs(0) = std::min(rs, rsmax);
}
}
if (Details::PhaseUsed::gas(pu)) {
if (! Details::PhaseUsed::oil(pu)) {
// Oil *NOT* active -- not really supported.
cond.setFreeGas();
}
if (Details::PhaseUsed::oil(pu)) {
const double rvmax = attr.Rmax(ig);
const double rv =
(0.0 < std::abs(in[ig]))
? (in[io] / in[ig])
: (0.0 < std::abs(in[io])) ? rvmax : 0.0;
m.rv(0) = std::min(rv, rvmax);
}
}
return m;
}
/**
* Conversion from \code Property::V \endcode to (constant)
* \code Property::ADB \endcode (zero derivatives).
*/
typename Property::ADB
constant(const typename Property::V& x) const
{
return Property::ADB::constant(x);
}
/**
* Conversion from \c double to (constant) \code Property::ADB
* \endcode (zero derivatives).
*/
typename Property::ADB
constant(const double x) const
{
typename Property::V y(1);
y << x;
return this->constant(y);
}
/**
* Retrieve representative cell of region
*
* \param[in] r Particular region.
*
* \return Representative cell of region \c r.
*/
typename Property::Cells
getRegCell(const RegionId r) const
{
typename Property::Cells c(1, this->attr_.cell(r));
return c;
}
};
} // namespace RateConverter
} // namespace Opm
#endif /* OPM_RATECONVERTER_HPP_HEADER_INCLUDED */