opm-simulators/examples/problems/diffusionproblem.hh
Arne Morten Kvarving 6103383c1a fixed: inconsistent parameter setups
registered as int and obtained as unsigned, or registered
as Scalar and obtained as int
2024-04-04 14:34:37 +02:00

413 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::DiffusionProblem
*/
#ifndef EWOMS_POWER_INJECTION_PROBLEM_HH
#define EWOMS_POWER_INJECTION_PROBLEM_HH
#include <opm/models/ncp/ncpproperties.hh>
#include <opm/models/io/cubegridvanguard.hh>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/fluidsystems/H2ON2FluidSystem.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <sstream>
#include <string>
namespace Opm {
template <class TypeTag>
class DiffusionProblem;
}
namespace Opm::Properties {
namespace TTag {
struct DiffusionBaseProblem {};
} // namespace TTag
// Set the grid implementation to be used
template<class TypeTag>
struct Grid<TypeTag, TTag::DiffusionBaseProblem> { using type = Dune::YaspGrid</*dim=*/1>; };
// set the Vanguard property
template<class TypeTag>
struct Vanguard<TypeTag, TTag::DiffusionBaseProblem> { using type = Opm::CubeGridVanguard<TypeTag>; };
// Set the problem property
template<class TypeTag>
struct Problem<TypeTag, TTag::DiffusionBaseProblem> { using type = Opm::DiffusionProblem<TypeTag>; };
// Set the fluid system
template<class TypeTag>
struct FluidSystem<TypeTag, TTag::DiffusionBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
public:
using type = Opm::H2ON2FluidSystem<Scalar>;
};
// Set the material Law
template<class TypeTag>
struct MaterialLaw<TypeTag, TTag::DiffusionBaseProblem>
{
private:
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
static_assert(FluidSystem::numPhases == 2,
"A fluid system with two phases is required "
"for this problem!");
using Traits = Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx>;
public:
using type = Opm::LinearMaterial<Traits>;
};
// Enable molecular diffusion for this problem
template<class TypeTag>
struct EnableDiffusion<TypeTag, TTag::DiffusionBaseProblem> { static constexpr bool value = true; };
// Disable gravity
template<class TypeTag>
struct EnableGravity<TypeTag, TTag::DiffusionBaseProblem> { static constexpr bool value = false; };
// define the properties specific for the diffusion problem
template<class TypeTag>
struct DomainSizeX<TypeTag, TTag::DiffusionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct DomainSizeY<TypeTag, TTag::DiffusionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct DomainSizeZ<TypeTag, TTag::DiffusionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1.0;
};
template<class TypeTag>
struct CellsX<TypeTag, TTag::DiffusionBaseProblem> { static constexpr unsigned value = 250; };
template<class TypeTag>
struct CellsY<TypeTag, TTag::DiffusionBaseProblem> { static constexpr unsigned value = 1; };
template<class TypeTag>
struct CellsZ<TypeTag, TTag::DiffusionBaseProblem> { static constexpr unsigned value = 1; };
// The default for the end time of the simulation
template<class TypeTag>
struct EndTime<TypeTag, TTag::DiffusionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1e6;
};
// The default for the initial time step size of the simulation
template<class TypeTag>
struct InitialTimeStepSize<TypeTag, TTag::DiffusionBaseProblem>
{
using type = GetPropType<TypeTag, Scalar>;
static constexpr type value = 1000;
};
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup TestProblems
* \brief 1D problem which is driven by molecular diffusion.
*
* The domain is one meter long and completely filled with gas and
* closed on all boundaries. Its left half exhibits a slightly higher
* water concentration than the right one. After a while, the
* concentration of water will be equilibrate due to molecular
* diffusion.
*/
template <class TypeTag>
class DiffusionProblem : public GetPropType<TypeTag, Properties::BaseProblem>
{
using ParentType = GetPropType<TypeTag, Properties::BaseProblem>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using Model = GetPropType<TypeTag, Properties::Model>;
enum {
// number of phases
numPhases = FluidSystem::numPhases,
// phase indices
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
// component indices
H2OIdx = FluidSystem::H2OIdx,
N2Idx = FluidSystem::N2Idx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using MaterialLaw = GetPropType<TypeTag, Properties::MaterialLaw>;
using MaterialLawParams = GetPropType<TypeTag, Properties::MaterialLawParams>;
using CoordScalar = typename GridView::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
DiffusionProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
FluidSystem::init();
temperature_ = 273.15 + 20.0;
materialParams_.finalize();
K_ = this->toDimMatrix_(1e-12); // [m^2]
setupInitialFluidStates_();
}
/*!
* \name Auxiliary methods
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return std::string("diffusion_") + Model::name(); }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
//! \}
/*!
* \name Soil parameters
*/
//! \{
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return K_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return 0.35; }
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams&
materialLawParams(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return materialParams_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*/
template <class Context>
Scalar temperature(const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ return temperature_; }
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* This problem sets no-flow boundaries everywhere.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ values.setNoFlow(); }
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const auto& pos = context.pos(spaceIdx, timeIdx);
if (onLeftSide_(pos))
values.assignNaive(leftInitialFluidState_);
else
values.assignNaive(rightInitialFluidState_);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& /*context*/,
unsigned /*spaceIdx*/,
unsigned /*timeIdx*/) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftSide_(const GlobalPosition& pos) const
{ return pos[0] < (this->boundingBoxMin()[0] + this->boundingBoxMax()[0]) / 2; }
void setupInitialFluidStates_()
{
// create the initial fluid state for the left half of the domain
leftInitialFluidState_.setTemperature(temperature_);
Scalar Sl = 0.0;
leftInitialFluidState_.setSaturation(liquidPhaseIdx, Sl);
leftInitialFluidState_.setSaturation(gasPhaseIdx, 1 - Sl);
Scalar p = 1e5;
leftInitialFluidState_.setPressure(liquidPhaseIdx, p);
leftInitialFluidState_.setPressure(gasPhaseIdx, p);
Scalar xH2O = 0.01;
leftInitialFluidState_.setMoleFraction(gasPhaseIdx, H2OIdx, xH2O);
leftInitialFluidState_.setMoleFraction(gasPhaseIdx, N2Idx, 1 - xH2O);
using CFRP = Opm::ComputeFromReferencePhase<Scalar, FluidSystem>;
typename FluidSystem::template ParameterCache<Scalar> paramCache;
CFRP::solve(leftInitialFluidState_, paramCache, gasPhaseIdx,
/*setViscosity=*/false, /*setEnthalpy=*/false);
// create the initial fluid state for the right half of the domain
rightInitialFluidState_.assign(leftInitialFluidState_);
xH2O = 0.0;
rightInitialFluidState_.setMoleFraction(gasPhaseIdx, H2OIdx, xH2O);
rightInitialFluidState_.setMoleFraction(gasPhaseIdx, N2Idx, 1 - xH2O);
CFRP::solve(rightInitialFluidState_, paramCache, gasPhaseIdx,
/*setViscosity=*/false, /*setEnthalpy=*/false);
}
DimMatrix K_;
MaterialLawParams materialParams_;
Opm::CompositionalFluidState<Scalar, FluidSystem> leftInitialFluidState_;
Opm::CompositionalFluidState<Scalar, FluidSystem> rightInitialFluidState_;
Scalar temperature_;
};
} // namespace Opm
#endif