mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-26 10:56:24 -06:00
b87154223b
Commit 371b2592f
misordered the closing brace of a namespace and
the conditional declarations dependent upon MPI availability. This
commit restores the expected order and fixes non-MPI builds.
356 lines
12 KiB
C++
356 lines
12 KiB
C++
/*
|
|
Copyright 2014, 2015 Dr. Markus Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2014, 2015 Statoil ASA
|
|
Copyright 2015 NTNU
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#if HAVE_MPI && HAVE_DUNE_ISTL
|
|
|
|
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
|
|
|
|
#include <dune/common/enumset.hh>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <cstddef>
|
|
#include <exception>
|
|
#include <mpi.h>
|
|
#include <numeric>
|
|
|
|
namespace
|
|
{
|
|
|
|
template<class T>
|
|
class IndexSetInserter
|
|
{
|
|
public:
|
|
using ParallelIndexSet = T;
|
|
using LocalIndex = typename ParallelIndexSet::LocalIndex;
|
|
using GlobalIndex = typename ParallelIndexSet::GlobalIndex;
|
|
|
|
IndexSetInserter(ParallelIndexSet& indexSet, const GlobalIndex& component_size,
|
|
std::size_t local_component_size, std::size_t num_components)
|
|
: indexSet_(&indexSet), component_size_(component_size),
|
|
local_component_size_(local_component_size),
|
|
num_components_(num_components)
|
|
{}
|
|
|
|
void operator()(const typename ParallelIndexSet::IndexPair& pair)
|
|
{
|
|
for(std::size_t i = 0; i < num_components_; i++)
|
|
indexSet_->add(i * component_size_ + pair.global(),
|
|
LocalIndex(i * local_component_size_ + pair.local(),
|
|
pair.local().attribute()));
|
|
}
|
|
private:
|
|
ParallelIndexSet* indexSet_;
|
|
/// \brief The global number of unknowns per component/equation.
|
|
GlobalIndex component_size_;
|
|
/// \brief The local number of unknowns per component/equation.
|
|
std::size_t local_component_size_;
|
|
/// \brief The number of components/equations.
|
|
std::size_t num_components_;
|
|
};
|
|
|
|
/** \brief gather/scatter callback for communcation */
|
|
template<typename T>
|
|
struct CopyGatherScatter
|
|
{
|
|
using V = typename Dune::CommPolicy<T>::IndexedType;
|
|
|
|
static V gather(const T& a, std::size_t i)
|
|
{
|
|
return a[i];
|
|
}
|
|
|
|
static void scatter(T& a, V v, std::size_t i)
|
|
{
|
|
a[i] = v;
|
|
}
|
|
};
|
|
|
|
template<int I=0, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I == sizeof...(BinaryOperators), void>::type
|
|
computeGlobalReduction(const std::tuple<ReturnValues...>&,
|
|
std::tuple<BinaryOperators...>&,
|
|
std::tuple<ReturnValues...>&)
|
|
{}
|
|
|
|
template<int I=0, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I !=sizeof...(BinaryOperators), void>::type
|
|
computeGlobalReduction(const std::tuple<ReturnValues...>& receivedValues,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values)
|
|
{
|
|
auto& val = std::get<I>(values);
|
|
val = std::get<I>(operators).localOperator()(val, std::get<I>(receivedValues));
|
|
computeGlobalReduction<I+1>(receivedValues, operators, values);
|
|
}
|
|
|
|
template<int I=0, typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I==sizeof...(Containers), void>::type
|
|
computeLocalReduction(const std::tuple<Containers...>&,
|
|
std::tuple<BinaryOperators...>&,
|
|
std::tuple<ReturnValues...>&,
|
|
const std::vector<double>&)
|
|
{}
|
|
|
|
template<int I=0, typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
typename std::enable_if<I!=sizeof...(Containers), void>::type
|
|
computeLocalReduction(const std::tuple<Containers...>& containers,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values,
|
|
const std::vector<double>& ownerMask)
|
|
{
|
|
const auto& container = std::get<I>(containers);
|
|
if (container.size())
|
|
{
|
|
auto& reduceOperator = std::get<I>(operators);
|
|
// Eigen:Block does not support STL iterators!!!!
|
|
// Therefore we need to rely on the harder random-access
|
|
// property of the containers. But this should be save, too.
|
|
// Just commenting out code in the hope that Eigen might improve
|
|
// in this regard in the future.
|
|
//auto newVal = container.begin();
|
|
auto mask = ownerMask.begin();
|
|
auto& value = std::get<I>(values);
|
|
value = reduceOperator.getInitialValue();
|
|
|
|
for (auto endVal = ownerMask.end(); mask != endVal; /*++newVal,*/ ++mask )
|
|
{
|
|
value = reduceOperator(value, container[mask-ownerMask.begin()], *mask);
|
|
}
|
|
}
|
|
computeLocalReduction<I+1>(containers, operators, values, ownerMask);
|
|
}
|
|
|
|
}
|
|
|
|
namespace Opm
|
|
{
|
|
namespace
|
|
{
|
|
|
|
template<class T>
|
|
struct is_tuple
|
|
: std::integral_constant<bool, false>
|
|
{};
|
|
template<typename... T>
|
|
struct is_tuple<std::tuple<T...> >
|
|
: std::integral_constant<bool, true>
|
|
{};
|
|
}
|
|
|
|
ParallelISTLInformation::ParallelISTLInformation()
|
|
: indexSet_(new ParallelIndexSet),
|
|
remoteIndices_(new RemoteIndices(*indexSet_, *indexSet_, MPI_COMM_WORLD)),
|
|
communicator_(MPI_COMM_WORLD)
|
|
{}
|
|
|
|
|
|
ParallelISTLInformation::ParallelISTLInformation(MPI_Comm communicator)
|
|
: indexSet_(new ParallelIndexSet),
|
|
remoteIndices_(new RemoteIndices(*indexSet_, *indexSet_, communicator)),
|
|
communicator_(communicator)
|
|
{}
|
|
|
|
|
|
ParallelISTLInformation::
|
|
ParallelISTLInformation(const std::shared_ptr<ParallelIndexSet>& indexSet,
|
|
const std::shared_ptr<RemoteIndices>& remoteIndices,
|
|
MPI_Comm communicator)
|
|
: indexSet_(indexSet), remoteIndices_(remoteIndices), communicator_(communicator)
|
|
{}
|
|
|
|
ParallelISTLInformation::ParallelISTLInformation(const ParallelISTLInformation& other)
|
|
: indexSet_(other.indexSet_), remoteIndices_(other.remoteIndices_),
|
|
communicator_(other.communicator_)
|
|
{}
|
|
|
|
void ParallelISTLInformation::copyValuesTo(ParallelIndexSet& indexSet,
|
|
RemoteIndices& remoteIndices,
|
|
std::size_t local_component_size,
|
|
std::size_t num_components) const
|
|
{
|
|
ParallelIndexSet::GlobalIndex global_component_size = local_component_size;
|
|
if ( num_components > 1 )
|
|
{
|
|
ParallelIndexSet::GlobalIndex max_gi = 0;
|
|
// component the max global index
|
|
for( auto i = indexSet_->begin(), end = indexSet_->end(); i != end; ++i )
|
|
{
|
|
max_gi = std::max(max_gi, i->global());
|
|
}
|
|
global_component_size = max_gi+1;
|
|
global_component_size = communicator_.max(global_component_size);
|
|
}
|
|
indexSet.beginResize();
|
|
IndexSetInserter<ParallelIndexSet> inserter(indexSet, global_component_size,
|
|
local_component_size, num_components);
|
|
std::for_each(indexSet_->begin(), indexSet_->end(), inserter);
|
|
indexSet.endResize();
|
|
remoteIndices.rebuild<false>();
|
|
}
|
|
|
|
template<class T>
|
|
void ParallelISTLInformation::copyOwnerToAll(const T& source, T& dest) const
|
|
{
|
|
using AS = Dune::OwnerOverlapCopyAttributeSet;
|
|
using CopySet = Dune::EnumItem<AS, AS::copy>;
|
|
using OwnerSet = Dune::EnumItem<AS, AS::owner>;
|
|
using OverlapSet = Dune::EnumItem<AS, AS::overlap>;
|
|
using OwnerOverlapSet = Dune::Combine<OwnerSet, OverlapSet, AS::AttributeSet>;
|
|
using AllSet = Dune::Combine<OwnerOverlapSet, CopySet, AS::AttributeSet>;
|
|
OwnerSet sourceFlags;
|
|
AllSet destFlags;
|
|
Dune::Interface interface(communicator_);
|
|
if( !remoteIndices_->isSynced() )
|
|
{
|
|
remoteIndices_->rebuild<false>();
|
|
}
|
|
interface.build(*remoteIndices_,sourceFlags,destFlags);
|
|
Dune::BufferedCommunicator communicator;
|
|
communicator.template build<T>(interface);
|
|
communicator.template forward<CopyGatherScatter<T>>(source,dest);
|
|
communicator.free();
|
|
}
|
|
|
|
template<class T>
|
|
const std::vector<double>&
|
|
ParallelISTLInformation::updateOwnerMask(const T& container) const
|
|
{
|
|
if (!indexSet_)
|
|
{
|
|
OPM_THROW(std::runtime_error, "Trying to update owner mask without parallel information!");
|
|
}
|
|
if (static_cast<std::size_t>(container.size()) != ownerMask_.size())
|
|
{
|
|
ownerMask_.resize(container.size(), 1.);
|
|
for (const auto& i : *indexSet_)
|
|
{
|
|
if (i.local().attribute() != Dune::OwnerOverlapCopyAttributeSet::owner)
|
|
{
|
|
ownerMask_[i.local().local()] = 0.;
|
|
}
|
|
}
|
|
}
|
|
return ownerMask_;
|
|
}
|
|
|
|
template<typename Container, typename BinaryOperator, typename T>
|
|
void ParallelISTLInformation::computeReduction(const Container& container,
|
|
BinaryOperator binaryOperator,
|
|
T& value) const
|
|
{
|
|
if constexpr (is_tuple<Container>())
|
|
computeTupleReduction(container, binaryOperator, value);
|
|
else
|
|
{
|
|
std::tuple<const Container&> containers = std::tuple<const Container&>(container);
|
|
auto values = std::make_tuple(value);
|
|
auto operators = std::make_tuple(binaryOperator);
|
|
computeTupleReduction(containers, operators, values);
|
|
value = std::get<0>(values);
|
|
}
|
|
}
|
|
|
|
template<typename... Containers, typename... BinaryOperators, typename... ReturnValues>
|
|
void ParallelISTLInformation::computeTupleReduction(const std::tuple<Containers...>& containers,
|
|
std::tuple<BinaryOperators...>& operators,
|
|
std::tuple<ReturnValues...>& values) const
|
|
{
|
|
static_assert(std::tuple_size<std::tuple<Containers...> >::value ==
|
|
std::tuple_size<std::tuple<BinaryOperators...> >::value,
|
|
"We need the same number of containers and binary operators");
|
|
static_assert(std::tuple_size<std::tuple<Containers...> >::value ==
|
|
std::tuple_size<std::tuple<ReturnValues...> >::value,
|
|
"We need the same number of containers and return values");
|
|
if (std::tuple_size<std::tuple<Containers...> >::value == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
// Copy the initial values.
|
|
std::tuple<ReturnValues...> init = values;
|
|
updateOwnerMask(std::get<0>(containers));
|
|
computeLocalReduction(containers, operators, values, ownerMask_);
|
|
std::vector<std::tuple<ReturnValues...> > receivedValues(communicator_.size());
|
|
communicator_.allgather(&values, 1, &(receivedValues[0]));
|
|
values = init;
|
|
for (auto& rval : receivedValues)
|
|
{
|
|
computeGlobalReduction(rval, operators, values);
|
|
}
|
|
}
|
|
|
|
template<class T1>
|
|
auto
|
|
accumulateMaskedValues(const T1& container, const std::vector<double>* maskContainer)
|
|
-> decltype(container[0]*(*maskContainer)[0])
|
|
{
|
|
decltype(container[0]*(*maskContainer)[0]) initial = 0;
|
|
|
|
if (maskContainer)
|
|
{
|
|
return std::inner_product(container.begin(), container.end(),
|
|
maskContainer->begin(), initial);
|
|
}
|
|
else
|
|
{
|
|
return std::accumulate(container.begin(), container.end(), initial);
|
|
}
|
|
}
|
|
|
|
template<class T> using C1 = std::vector<T>;
|
|
template<class T> using Ops1 = Reduction::MaskIDOperator<std::plus<T>>;
|
|
|
|
template<class T>
|
|
using C2 = std::tuple<std::vector<T>,
|
|
std::vector<T>,
|
|
std::vector<T>,
|
|
std::vector<T>,
|
|
std::vector<T>>;
|
|
template<class T>
|
|
using Ops2 = std::tuple<decltype(Reduction::makeGlobalSumFunctor<T>()),
|
|
decltype(Reduction::makeGlobalMaxFunctor<T>()),
|
|
decltype(Reduction::makeGlobalMinFunctor<T>()),
|
|
decltype(Reduction::makeInnerProductFunctor<T>()),
|
|
decltype(Reduction::makeLInfinityNormFunctor<T>())>;
|
|
template<class T>
|
|
using Vals2 = std::tuple<T,T,T,T,T>;
|
|
|
|
#define INSTANCE1(T) \
|
|
template void ParallelISTLInformation::computeReduction<C1<T>,Ops1<T>,T>(const C1<T>&,Ops1<T>,T&) const;
|
|
|
|
#define INSTANCE2(T) \
|
|
template void ParallelISTLInformation::computeReduction<C2<T>,Ops2<T>,Vals2<T>>(const C2<T>&,Ops2<T>,Vals2<T>&) const;
|
|
|
|
#define INSTANCE(T) \
|
|
INSTANCE1(T) \
|
|
INSTANCE2(T)
|
|
|
|
INSTANCE(int)
|
|
INSTANCE(float)
|
|
INSTANCE(std::size_t)
|
|
|
|
} // namespace Opm
|
|
|
|
#endif // HAVE_MPI && HAVE_DUNE_ISTL
|