opm-simulators/opm/simulators/timestepping/SimulatorReport.cpp
2023-08-15 09:32:10 +02:00

275 lines
12 KiB
C++

/*
Copyright 2012, 2020 SINTEF Digital, Mathematics and Cybernetics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/timestepping/SimulatorReport.hpp>
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/input/eclipse/Units/Units.hpp>
#include <cstddef>
#include <iomanip>
#include <ostream>
#include <fmt/format.h>
namespace Opm
{
SimulatorReportSingle SimulatorReportSingle::serializationTestObject()
{
return SimulatorReportSingle{1.0, 2.0, 3.0, 4.0, 5.0, 6.0,
7.0, 8.0, 9.0, 10.0, 11.0,
12, 13, 14, 15, 16, 17,
true, false, 18, 19.0, 20.0};
}
bool SimulatorReportSingle::operator==(const SimulatorReportSingle& rhs) const
{
return this->pressure_time == rhs.pressure_time &&
this->transport_time == rhs.transport_time &&
this->total_time == rhs.total_time &&
this->solver_time == rhs.solver_time &&
this->assemble_time == rhs.assemble_time &&
this->pre_post_time == rhs.pre_post_time &&
this->assemble_time_well == rhs.assemble_time_well &&
this->linear_solve_setup_time == rhs.linear_solve_setup_time &&
this->linear_solve_time == rhs.linear_solve_time &&
this->update_time == rhs.update_time &&
this->output_write_time == rhs.output_write_time &&
this->total_well_iterations == rhs.total_well_iterations &&
this->total_linearizations == rhs.total_linearizations &&
this->total_newton_iterations == rhs.total_newton_iterations &&
this->total_linear_iterations == rhs.total_linear_iterations &&
this->min_linear_iterations == rhs.min_linear_iterations &&
this->max_linear_iterations == rhs.max_linear_iterations &&
this->converged == rhs.converged &&
this->well_group_control_changed == rhs.well_group_control_changed &&
this->exit_status == rhs.exit_status &&
this->global_time == rhs.global_time &&
this->timestep_length == rhs.timestep_length;
}
void SimulatorReportSingle::operator+=(const SimulatorReportSingle& sr)
{
pressure_time += sr.pressure_time;
transport_time += sr.transport_time;
linear_solve_setup_time += sr.linear_solve_setup_time;
linear_solve_time += sr.linear_solve_time;
solver_time += sr.solver_time;
assemble_time += sr.assemble_time;
pre_post_time += sr.pre_post_time;
assemble_time_well += sr.assemble_time_well;
update_time += sr.update_time;
output_write_time += sr.output_write_time;
total_time += sr.total_time;
total_well_iterations += sr.total_well_iterations;
total_linearizations += sr.total_linearizations;
total_newton_iterations += sr.total_newton_iterations;
total_linear_iterations += sr.total_linear_iterations;
if (sr.total_linear_iterations > 0) {
min_linear_iterations = std::min(min_linear_iterations, sr.total_linear_iterations);
}
max_linear_iterations = std::max(max_linear_iterations, sr.total_linear_iterations);
// It makes no sense adding time points. Therefore, do not
// overwrite the value of global_time which gets set in
// NonlinearSolverEbos.hpp by the line:
// report.global_time = timer.simulationTimeElapsed();
}
void SimulatorReportSingle::reportStep(std::ostream& ss) const
{
if (total_well_iterations != 0) {
ss << fmt::format("Well its={:2}", total_well_iterations);
}
ss << fmt::format(" Newton its={:2}, linearizations={:2} ({:2.1f}sec), linear its={:3} ({:2.1f}sec)",
total_newton_iterations,
total_linearizations,
assemble_time,
total_linear_iterations,
linear_solve_time);
}
void SimulatorReportSingle::reportFullyImplicit(std::ostream& os, const SimulatorReportSingle* failureReport) const
{
auto noZero = [](auto val)
{
if (val == decltype(val){0})
return decltype(val){1};
return val;
};
os << fmt::format("Total time (seconds): {:9.2f} \n", total_time);
os << fmt::format("Solver time (seconds): {:9.2f} \n",
solver_time + (failureReport ? failureReport->solver_time : 0.0));
if (assemble_time > 0.0 || linear_solve_time > 0.0) {
double t = assemble_time + (failureReport ? failureReport->assemble_time : 0.0);
os << fmt::format(" Assembly time (seconds): {:9.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->assemble_time,
100*failureReport->assemble_time/noZero(t));
}
os << std::endl;
t = assemble_time_well + (failureReport ? failureReport->assemble_time_well : 0.0);
os << fmt::format(" Well assembly (seconds): {:7.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->assemble_time_well,
100*failureReport->assemble_time_well/noZero(t));
}
os << std::endl;
t = linear_solve_time + (failureReport ? failureReport->linear_solve_time : 0.0);
os << fmt::format(" Linear solve time (seconds):{:8.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->linear_solve_time,
100*failureReport->linear_solve_time/noZero(t));
}
os << std::endl;
t = linear_solve_setup_time + (failureReport ? failureReport->linear_solve_setup_time : 0.0);
os << fmt::format(" Linear setup (seconds): {:7.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->linear_solve_setup_time,
100*failureReport->linear_solve_setup_time/noZero(t));
}
os << std::endl;
t = update_time + (failureReport ? failureReport->update_time : 0.0);
os << fmt::format(" Update time (seconds): {:7.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->update_time,
100*failureReport->update_time/noZero(t));
}
os << std::endl;
t = pre_post_time + (failureReport ? failureReport->pre_post_time : 0.0);
os << fmt::format(" Pre/post step (seconds): {:7.2f}", t);
if (failureReport) {
os << fmt::format(" (Failed: {:2.1f}; {:2.1f}%)",
failureReport->pre_post_time,
100*failureReport->pre_post_time/noZero(t));
}
os << std::endl;
os << fmt::format(" Output write time (seconds): {:7.2f}",
output_write_time + (failureReport ? failureReport->output_write_time : 0.0));
os << std::endl;
}
int n = total_linearizations + (failureReport ? failureReport->total_linearizations : 0);
os << fmt::format("Overall Linearizations: {:7}", n);
if (failureReport) {
os << fmt::format(" (Failed: {:3}; {:2.1f}%)",
failureReport->total_linearizations,
100.0*failureReport->total_linearizations/noZero(n));
}
os << std::endl;
n = total_newton_iterations + (failureReport ? failureReport->total_newton_iterations : 0);
os << fmt::format("Overall Newton Iterations: {:7}", n);
if (failureReport) {
os << fmt::format(" (Failed: {:3}; {:2.1f}%)",
failureReport->total_newton_iterations,
100.0*failureReport->total_newton_iterations/noZero(n));
}
os << std::endl;
n = total_linear_iterations + (failureReport ? failureReport->total_linear_iterations : 0);
os << fmt::format("Overall Linear Iterations: {:7}", n);
if (failureReport) {
os << fmt::format(" (Failed: {:3}; {:2.1f}%)",
failureReport->total_linear_iterations,
100.0*failureReport->total_linear_iterations/noZero(n));
}
os << std::endl;
}
SimulatorReport SimulatorReport::serializationTestObject()
{
return SimulatorReport{SimulatorReportSingle::serializationTestObject(),
SimulatorReportSingle::serializationTestObject(),
{SimulatorReportSingle::serializationTestObject()}};
}
bool SimulatorReport::operator==(const SimulatorReport& rhs) const
{
return this->success == rhs.success &&
this->failure == rhs.failure &&
this->stepreports == rhs.stepreports;
}
void SimulatorReport::operator+=(const SimulatorReportSingle& sr)
{
if (sr.converged) {
success += sr;
} else {
failure += sr;
}
stepreports.push_back(sr);
}
void SimulatorReport::operator+=(const SimulatorReport& sr)
{
success += sr.success;
failure += sr.failure;
stepreports.insert(stepreports.end(), sr.stepreports.begin(), sr.stepreports.end());
}
void SimulatorReport::reportFullyImplicit(std::ostream& os) const
{
os << fmt::format("Number of timesteps: {:9}\n", stepreports.size());
success.reportFullyImplicit(os, &failure);
}
void SimulatorReport::fullReports(std::ostream& os) const
{
os << " Time(day) TStep(day) Assembly LSetup LSolve Update Output WellIt Lins NewtIt LinIt Conv\n";
for (std::size_t i = 0; i < this->stepreports.size(); ++i) {
const SimulatorReportSingle& sr = this->stepreports[i];
os.precision(10);
os << std::defaultfloat;
os << std::setw(11) << unit::convert::to(sr.global_time, unit::day) << " ";
os << std::setw(11) << unit::convert::to(sr.timestep_length, unit::day) << " ";
os.precision(4);
os << std::fixed;
os << std::setw(9) << sr.assemble_time << " ";
os << std::setw(9) << sr.linear_solve_setup_time << " ";
os << std::setw(9) << sr.linear_solve_time << " ";
os << std::setw(9) << sr.update_time << " ";
os << std::setw(9) << sr.output_write_time << " ";
os.precision(6);
os << std::defaultfloat;
os << std::setw(6) << sr.total_well_iterations << " ";
os << std::setw(4) << sr.total_linearizations << " ";
os << std::setw(6) << sr.total_newton_iterations << " ";
os << std::setw(5) << sr.total_linear_iterations << " ";
os << std::setw(4) << sr.converged << "\n";
}
}
} // namespace Opm