opm-simulators/opm/autodiff/SimulatorBase_impl.hpp
2017-04-18 15:23:27 +02:00

850 lines
38 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2014-2016 IRIS AS
Copyright 2015 Andreas Lauser
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <utility>
#include <functional>
#include <algorithm>
#include <locale>
#include <opm/parser/eclipse/EclipseState/Schedule/Events.hpp>
#include <opm/core/utility/initHydroCarbonState.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/wells/DynamicListEconLimited.hpp>
#include <opm/autodiff/BlackoilModel.hpp>
namespace Opm
{
template <class Implementation>
SimulatorBase<Implementation>::SimulatorBase(const parameter::ParameterGroup& param,
const Grid& grid,
DerivedGeology& geo,
BlackoilPropsAdFromDeck& props,
const RockCompressibility* rock_comp_props,
NewtonIterationBlackoilInterface& linsolver,
const double* gravity,
const bool has_disgas,
const bool has_vapoil,
std::shared_ptr<EclipseState> eclipse_state,
OutputWriter& output_writer,
const std::vector<double>& threshold_pressures_by_face,
const std::unordered_set<std::string>& defunct_well_names)
: param_(param),
model_param_(param),
solver_param_(param),
grid_(grid),
props_(props),
rock_comp_props_(rock_comp_props),
gravity_(gravity),
geo_(geo),
solver_(linsolver),
has_disgas_(has_disgas),
has_vapoil_(has_vapoil),
terminal_output_(param.getDefault("output_terminal", true)),
eclipse_state_(eclipse_state),
output_writer_(output_writer),
rateConverter_(props_.phaseUsage(), props.cellPvtRegionIndex(), AutoDiffGrid::numCells(grid_), std::vector<int>(AutoDiffGrid::numCells(grid_), 0)),
threshold_pressures_by_face_(threshold_pressures_by_face),
is_parallel_run_( false ),
defunct_well_names_(defunct_well_names)
{
// Misc init.
const int num_cells = AutoDiffGrid::numCells(grid);
allcells_.resize(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells_[cell] = cell;
}
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const ParallelISTLInformation& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
// Only rank 0 does print to std::cout
terminal_output_ = terminal_output_ && ( info.communicator().rank() == 0 );
is_parallel_run_ = ( info.communicator().size() > 1 );
}
#endif
}
template <class Implementation>
SimulatorReport SimulatorBase<Implementation>::run(SimulatorTimer& timer,
ReservoirState& state)
{
WellState prev_well_state;
ExtraData extra;
if (output_writer_.isRestart()) {
// This is a restart, populate WellState and ReservoirState state objects from restart file
output_writer_.initFromRestartFile(props_.phaseUsage(), grid_, state, prev_well_state, extra);
initHydroCarbonState(state, props_.phaseUsage(), Opm::UgGridHelpers::numCells(grid_), has_disgas_, has_vapoil_);
initHysteresisParams(state);
}
// Create timers and file for writing timing info.
Opm::time::StopWatch solver_timer;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_writer_.outputDirectory() + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
const auto& schedule = eclipse_state_->getSchedule();
// adaptive time stepping
const auto& events = schedule.getEvents();
std::unique_ptr< AdaptiveTimeStepping > adaptiveTimeStepping;
if( param_.getDefault("timestep.adaptive", true ) )
{
if (param_.getDefault("use_TUNING", false)) {
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( schedule.getTuning(), timer.currentStepNum(), param_, terminal_output_ ) );
} else {
adaptiveTimeStepping.reset( new AdaptiveTimeStepping( param_, terminal_output_ ) );
}
if (output_writer_.isRestart()) {
if (extra.suggested_step > 0.0) {
adaptiveTimeStepping->setSuggestedNextStep(extra.suggested_step);
}
}
}
std::string restorefilename = param_.getDefault("restorefile", std::string("") );
if( ! restorefilename.empty() )
{
// -1 means that we'll take the last report step that was written
const int desiredRestoreStep = param_.getDefault("restorestep", int(-1) );
output_writer_.restore( timer,
state,
prev_well_state,
restorefilename,
desiredRestoreStep );
}
DynamicListEconLimited dynamic_list_econ_limited;
SimulatorReport report;
SimulatorReport stepReport;
bool ooip_computed = false;
std::vector<int> fipnum_global = eclipse_state_->get3DProperties().getIntGridProperty("FIPNUM").getData();
//Get compressed cell fipnum.
std::vector<int> fipnum(AutoDiffGrid::numCells(grid_));
if (fipnum_global.empty()) {
std::fill(fipnum.begin(), fipnum.end(), 0);
} else {
for (size_t c = 0; c < fipnum.size(); ++c) {
fipnum[c] = fipnum_global[AutoDiffGrid::globalCell(grid_)[c]];
}
}
std::vector<std::vector<double> > OOIP;
// Main simulation loop.
while (!timer.done()) {
// Report timestep.
step_timer.start();
if ( terminal_output_ )
{
std::ostringstream ss;
timer.report(ss);
OpmLog::note(ss.str());
}
// Create wells and well state.
WellsManager wells_manager(*eclipse_state_,
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid_),
Opm::UgGridHelpers::globalCell(grid_),
Opm::UgGridHelpers::cartDims(grid_),
Opm::UgGridHelpers::dimensions(grid_),
Opm::UgGridHelpers::cell2Faces(grid_),
Opm::UgGridHelpers::beginFaceCentroids(grid_),
dynamic_list_econ_limited,
is_parallel_run_,
defunct_well_names_);
const Wells* wells = wells_manager.c_wells();
WellState well_state;
well_state.init(wells, state, prev_well_state);
// give the polymer and surfactant simulators the chance to do their stuff
asImpl().handleAdditionalWellInflow(timer, wells_manager, well_state, wells);
// write the inital state at the report stage
if (timer.initialStep()) {
Dune::Timer perfTimer;
perfTimer.start();
// No per cell data is written for initial step, but will be
// for subsequent steps, when we have started simulating
output_writer_.writeTimeStepWithoutCellProperties( timer, state, well_state, {} );
report.output_write_time += perfTimer.stop();
}
// Max oil saturation (for VPPARS), hysteresis update.
props_.updateSatOilMax(state.saturation());
props_.updateSatHyst(state.saturation(), allcells_);
// Compute reservoir volumes for RESV controls.
asImpl().computeRESV(timer.currentStepNum(), wells, state, well_state);
// Run a multiple steps of the solver depending on the time step control.
solver_timer.start();
const WellModel well_model(wells, &(wells_manager.wellCollection()));
std::unique_ptr<Solver> solver = asImpl().createSolver(well_model);
// Compute orignal FIP;
if (!ooip_computed) {
OOIP = solver->computeFluidInPlace(state, fipnum);
FIPUnitConvert(eclipse_state_->getUnits(), OOIP);
ooip_computed = true;
}
if( terminal_output_ )
{
std::ostringstream step_msg;
boost::posix_time::time_facet* facet = new boost::posix_time::time_facet("%d-%b-%Y");
step_msg.imbue(std::locale(std::locale::classic(), facet));
step_msg << "\nTime step " << std::setw(4) <<timer.currentStepNum()
<< " at day " << (double)unit::convert::to(timer.simulationTimeElapsed(), unit::day)
<< "/" << (double)unit::convert::to(timer.totalTime(), unit::day)
<< ", date = " << timer.currentDateTime();
OpmLog::info(step_msg.str());
}
// If sub stepping is enabled allow the solver to sub cycle
// in case the report steps are too large for the solver to converge
//
// \Note: The report steps are met in any case
// \Note: The sub stepping will require a copy of the state variables
if( adaptiveTimeStepping ) {
bool event = events.hasEvent(ScheduleEvents::NEW_WELL, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::PRODUCTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::INJECTION_UPDATE, timer.currentStepNum()) ||
events.hasEvent(ScheduleEvents::WELL_STATUS_CHANGE, timer.currentStepNum());
report += adaptiveTimeStepping->step( timer, *solver, state, well_state, event, output_writer_,
output_writer_.requireFIPNUM() ? &fipnum : nullptr );
}
else {
// solve for complete report step
stepReport = solver->step(timer, state, well_state);
report += stepReport;
if( terminal_output_ )
{
std::ostringstream iter_msg;
iter_msg << "Stepsize " << (double)unit::convert::to(timer.currentStepLength(), unit::day);
if (solver->wellIterations() != 0) {
iter_msg << " days well iterations = " << solver->wellIterations() << ", ";
}
iter_msg << "non-linear iterations = " << solver->nonlinearIterations()
<< ", total linear iterations = " << solver->linearIterations()
<< "\n";
OpmLog::info(iter_msg.str());
}
}
// update the derived geology (transmissibilities, pore volumes, etc) if the
// has geology changed for the next report step
const int nextTimeStepIdx = timer.currentStepNum() + 1;
if (nextTimeStepIdx < timer.numSteps()
&& events.hasEvent(ScheduleEvents::GEO_MODIFIER, nextTimeStepIdx)) {
// bring the contents of the keywords to the current state of the SCHEDULE
// section
//
// TODO (?): handle the parallel case (maybe this works out of the box)
const auto& miniDeck = schedule.getModifierDeck(nextTimeStepIdx);
eclipse_state_->applyModifierDeck(miniDeck);
geo_.update(grid_, props_, *eclipse_state_, gravity_);
}
// take time that was used to solve system for this reportStep
solver_timer.stop();
// update timing.
report.solver_time += solver_timer.secsSinceStart();
// Compute current FIP.
std::vector<std::vector<double> > COIP;
COIP = solver->computeFluidInPlace(state, fipnum);
std::vector<double> OOIP_totals = FIPTotals(OOIP, state);
std::vector<double> COIP_totals = FIPTotals(COIP, state);
//Convert to correct units
FIPUnitConvert(eclipse_state_->getUnits(), COIP);
FIPUnitConvert(eclipse_state_->getUnits(), OOIP_totals);
FIPUnitConvert(eclipse_state_->getUnits(), COIP_totals);
if ( terminal_output_ )
{
outputFluidInPlace(OOIP_totals, COIP_totals,eclipse_state_->getUnits(), 0);
for (size_t reg = 0; reg < OOIP.size(); ++reg) {
outputFluidInPlace(OOIP[reg], COIP[reg], eclipse_state_->getUnits(), reg+1);
}
}
if ( terminal_output_ )
{
std::string msg;
msg = "Fully implicit solver took: " + std::to_string(stepReport.solver_time) + " seconds. Total solver time taken: " + std::to_string(report.solver_time) + " seconds.";
OpmLog::note(msg);
}
if ( output_writer_.output() ) {
if ( output_writer_.isIORank() )
{
stepReport.reportParam(tstep_os);
}
}
// Increment timer, remember well state.
++timer;
// write simulation state at the report stage
Dune::Timer perfTimer;
perfTimer.start();
const auto& physicalModel = solver->model();
output_writer_.writeTimeStep( timer, state, well_state, physicalModel );
report.output_write_time += perfTimer.stop();
prev_well_state = well_state;
asImpl().updateListEconLimited(solver, eclipse_state_->getSchedule(), timer.currentStepNum(), wells,
well_state, dynamic_list_econ_limited);
}
// Stop timer and create timing report
total_timer.stop();
report.total_time = total_timer.secsSinceStart();
report.converged = true;
return report;
}
namespace SimFIBODetails {
typedef std::unordered_map<std::string, const Well* > WellMap;
inline WellMap
mapWells(const std::vector< const Well* >& wells)
{
WellMap wmap;
for (std::vector< const Well* >::const_iterator
w = wells.begin(), e = wells.end();
w != e; ++w)
{
wmap.insert(std::make_pair((*w)->name(), *w));
}
return wmap;
}
inline int
resv_control(const WellControls* ctrl)
{
int i, n = well_controls_get_num(ctrl);
bool match = false;
for (i = 0; (! match) && (i < n); ++i) {
match = well_controls_iget_type(ctrl, i) == RESERVOIR_RATE;
}
if (! match) { i = 0; }
return i - 1; // -1 if no match, undo final "++" otherwise
}
inline bool
is_resv(const Wells& wells,
const int w)
{
return (0 <= resv_control(wells.ctrls[w]));
}
inline bool
is_resv(const WellMap& wmap,
const std::string& name,
const std::size_t step)
{
bool match = false;
WellMap::const_iterator i = wmap.find(name);
if (i != wmap.end()) {
const Well* wp = i->second;
match = (wp->isProducer(step) &&
wp->getProductionProperties(step)
.hasProductionControl(WellProducer::RESV))
|| (wp->isInjector(step) &&
wp->getInjectionProperties(step)
.hasInjectionControl(WellInjector::RESV));
}
return match;
}
inline std::vector<int>
resvWells(const Wells* wells,
const std::size_t step,
const WellMap& wmap)
{
std::vector<int> resv_wells;
if( wells )
{
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
if (is_resv(*wells, w) ||
((wells->name[w] != 0) &&
is_resv(wmap, wells->name[w], step)))
{
resv_wells.push_back(w);
}
}
}
return resv_wells;
}
inline void
historyRates(const PhaseUsage& pu,
const WellProductionProperties& p,
std::vector<double>& rates)
{
assert (! p.predictionMode);
assert (rates.size() ==
std::vector<double>::size_type(pu.num_phases));
if (pu.phase_used[ BlackoilPhases::Aqua ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Aqua ];
rates[i] = p.WaterRate;
}
if (pu.phase_used[ BlackoilPhases::Liquid ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Liquid ];
rates[i] = p.OilRate;
}
if (pu.phase_used[ BlackoilPhases::Vapour ]) {
const std::vector<double>::size_type
i = pu.phase_pos[ BlackoilPhases::Vapour ];
rates[i] = p.GasRate;
}
}
} // namespace SimFIBODetails
template <class Implementation>
void SimulatorBase<Implementation>::handleAdditionalWellInflow(SimulatorTimer& /* timer */,
WellsManager& /* wells_manager */,
WellState& /* well_state */,
const Wells* /* wells */)
{ }
template <class Implementation>
auto SimulatorBase<Implementation>::createSolver(const WellModel& well_model)
-> std::unique_ptr<Solver>
{
auto model = std::unique_ptr<Model>(new Model(model_param_,
grid_,
props_,
geo_,
rock_comp_props_,
well_model,
solver_,
eclipse_state_,
has_disgas_,
has_vapoil_,
terminal_output_));
if (!threshold_pressures_by_face_.empty()) {
model->setThresholdPressures(threshold_pressures_by_face_);
}
return std::unique_ptr<Solver>(new Solver(solver_param_, std::move(model)));
}
template <class Implementation>
void SimulatorBase<Implementation>::computeRESV(const std::size_t step,
const Wells* wells,
const BlackoilState& x,
WellState& xw)
{
typedef SimFIBODetails::WellMap WellMap;
const auto w_ecl = eclipse_state_->getSchedule().getWells(step);
const WellMap& wmap = SimFIBODetails::mapWells(w_ecl);
const std::vector<int>& resv_wells = SimFIBODetails::resvWells(wells, step, wmap);
const std::size_t number_resv_wells = resv_wells.size();
std::size_t global_number_resv_wells = number_resv_wells;
#if HAVE_MPI
if ( solver_.parallelInformation().type() == typeid(ParallelISTLInformation) )
{
const auto& info =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
global_number_resv_wells = info.communicator().sum(global_number_resv_wells);
if ( global_number_resv_wells )
{
// At least one process has resv wells. Therefore rate converter needs
// to calculate averages over regions that might cross process
// borders. This needs to be done by all processes and therefore
// outside of the next if statement.
rateConverter_.defineState(x, boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation()));
}
}
else
#endif
{
if ( global_number_resv_wells )
{
rateConverter_.defineState(x);
}
}
if (! resv_wells.empty()) {
const PhaseUsage& pu = props_.phaseUsage();
const std::vector<double>::size_type np = props_.numPhases();
std::vector<double> distr (np);
std::vector<double> hrates(np);
std::vector<double> prates(np);
for (std::vector<int>::const_iterator
rp = resv_wells.begin(), e = resv_wells.end();
rp != e; ++rp)
{
WellControls* ctrl = wells->ctrls[*rp];
const bool is_producer = wells->type[*rp] == PRODUCER;
// RESV control mode, all wells
{
const int rctrl = SimFIBODetails::resv_control(ctrl);
if (0 <= rctrl) {
const std::vector<double>::size_type off = (*rp) * np;
if (is_producer) {
// Convert to positive rates to avoid issues
// in coefficient calculations.
std::transform(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin(), std::negate<double>());
} else {
std::copy(xw.wellRates().begin() + (off + 0*np),
xw.wellRates().begin() + (off + 1*np),
prates.begin());
}
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(prates, fipreg, distr);
well_controls_iset_distr(ctrl, rctrl, & distr[0]);
}
}
// RESV control, WCONHIST wells. A bit of duplicate
// work, regrettably.
if (is_producer && wells->name[*rp] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[*rp]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellProductionProperties& p =
wp->getProductionProperties(step);
if (! p.predictionMode) {
// History matching (WCONHIST/RESV)
SimFIBODetails::historyRates(pu, p, hrates);
const int fipreg = 0; // Hack. Ignore FIP regions.
rateConverter_.calcCoeff(hrates, fipreg, distr);
// WCONHIST/RESV target is sum of all
// observed phase rates translated to
// reservoir conditions. Recall sign
// convention: Negative for producers.
const double target =
- std::inner_product(distr.begin(), distr.end(),
hrates.begin(), 0.0);
well_controls_clear(ctrl);
well_controls_assert_number_of_phases(ctrl, int(np));
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
const int ok_resv =
well_controls_add_new(RESERVOIR_RATE, target,
invalid_alq, invalid_vfp,
& distr[0], ctrl);
// For WCONHIST the BHP limit is set to 1 atm.
// or a value specified using WELTARG
double bhp_limit = (p.BHPLimit > 0) ? p.BHPLimit : unit::convert::from(1.0, unit::atm);
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (ok_resv != 0 && ok_bhp != 0) {
xw.currentControls()[*rp] = 0;
well_controls_set_current(ctrl, 0);
}
}
}
}
}
}
if( wells )
{
for (int w = 0, nw = wells->number_of_wells; w < nw; ++w) {
WellControls* ctrl = wells->ctrls[w];
const bool is_producer = wells->type[w] == PRODUCER;
if (!is_producer && wells->name[w] != 0) {
WellMap::const_iterator i = wmap.find(wells->name[w]);
if (i != wmap.end()) {
const auto* wp = i->second;
const WellInjectionProperties& injector = wp->getInjectionProperties(step);
if (!injector.predictionMode) {
//History matching WCONINJEH
static const double invalid_alq = -std::numeric_limits<double>::max();
static const int invalid_vfp = -std::numeric_limits<int>::max();
// For WCONINJEH the BHP limit is set to a large number
// or a value specified using WELTARG
double bhp_limit = (injector.BHPLimit > 0) ? injector.BHPLimit : std::numeric_limits<double>::max();
const int ok_bhp =
well_controls_add_new(BHP, bhp_limit,
invalid_alq, invalid_vfp,
NULL, ctrl);
if (!ok_bhp) {
OPM_THROW(std::runtime_error, "Failed to add well control.");
}
}
}
}
}
}
}
template <class Implementation>
void
SimulatorBase<Implementation>::FIPUnitConvert(const UnitSystem& units,
std::vector<std::vector<double> >& fip)
{
for (size_t i = 0; i < fip.size(); ++i) {
FIPUnitConvert(units, fip[i]);
}
}
template <class Implementation>
void
SimulatorBase<Implementation>::FIPUnitConvert(const UnitSystem& units, std::vector<double>& fip)
{
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
fip[0] = unit::convert::to(fip[0], unit::stb);
fip[1] = unit::convert::to(fip[1], unit::stb);
fip[2] = unit::convert::to(fip[2], 1000*unit::cubic(unit::feet));
fip[3] = unit::convert::to(fip[3], 1000*unit::cubic(unit::feet));
fip[4] = unit::convert::to(fip[4], unit::stb);
fip[5] = unit::convert::to(fip[5], unit::stb);
fip[6] = unit::convert::to(fip[6], unit::psia);
}
else if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
fip[6] = unit::convert::to(fip[6], unit::barsa);
}
else {
OPM_THROW(std::runtime_error, "Unsupported unit type for fluid in place output.");
}
}
template <class Implementation>
std::vector<double>
SimulatorBase<Implementation>::FIPTotals(const std::vector<std::vector<double> >& fip, const ReservoirState& state)
{
std::vector<double> totals(7, 0.0);
for (int i = 0; i < 5; ++i) {
for (size_t reg = 0; reg < fip.size(); ++reg) {
totals[i] += fip[reg][i];
}
}
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = props_.phaseUsage();
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
std::vector<double> so(nc);
std::vector<double> sg(nc);
std::vector<double> hydrocarbon(nc);
// Using dummy indices if phase not used, the columns will not be accessed below if unused.
const int oilpos = pu.phase_used[BlackoilPhases::Liquid] ? pu.phase_pos[BlackoilPhases::Liquid] : 0;
const int gaspos = pu.phase_used[BlackoilPhases::Vapour] ? pu.phase_pos[BlackoilPhases::Vapour] : 0;
const auto& soCol = s.col(oilpos);
const auto& sgCol = s.col(gaspos);
for (unsigned c = 0; c < so.size(); ++ c) {
double mySo = 0.0;
if (pu.phase_used[BlackoilPhases::Liquid]) {
mySo = soCol[c];
}
double mySg = 0.0;
if (pu.phase_used[BlackoilPhases::Vapour]) {
mySg = sgCol[c];
}
so[c] = mySo;
sg[c] = mySg;
hydrocarbon[c] = mySo + mySg;
}
const std::vector<double> p = state.pressure();
if ( ! is_parallel_run_ )
{
double tmp = 0.0;
double tmp2 = 0.0;
for (unsigned i = 0; i < p.size(); ++i) {
tmp += p[i] * geo_.poreVolume()[i] * hydrocarbon[i];
tmp2 += geo_.poreVolume()[i] * hydrocarbon[i];
}
totals[5] = geo_.poreVolume().sum();
totals[6] = tmp/tmp2;
}
else
{
#if HAVE_MPI
const auto & pinfo =
boost::any_cast<const ParallelISTLInformation&>(solver_.parallelInformation());
auto operators = std::make_tuple(Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>(),
Opm::Reduction::makeGlobalSumFunctor<double>());
std::vector<double> pav_nom(p.size());
std::vector<double> pav_denom(pav_nom.size());
for (unsigned i = 0; i < p.size(); ++i) {
pav_nom[i] = p[i] * geo_.poreVolume()[i] * hydrocarbon[i];
pav_denom[i] = geo_.poreVolume()[i] * hydrocarbon[i];
}
// using ref cref to prevent copying
auto inputs = std::make_tuple(std::cref(geo_.poreVolume()),
std::cref(pav_nom), std::cref(pav_denom));
std::tuple<double, double, double> results(0.0, 0.0, 0.0);
pinfo.computeReduction(inputs, operators, results);
using std::get;
totals[5] = get<0>(results);
totals[6] = get<1>(results)/get<2>(results);
#else
// This should never happen!
OPM_THROW(std::logic_error, "HAVE_MPI should be defined if we are running in parallel");
#endif
}
return totals;
}
template <class Implementation>
void
SimulatorBase<Implementation>::outputFluidInPlace(const std::vector<double>& oip, const std::vector<double>& cip, const UnitSystem& units, const int reg)
{
std::ostringstream ss;
if (!reg) {
ss << " ===================================================\n"
<< " : Field Totals :\n";
} else {
ss << " ===================================================\n"
<< " : FIPNUM report region "
<< std::setw(2) << reg << " :\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_METRIC) {
ss << " : PAV =" << std::setw(14) << cip[6] << " BARSA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[5] << " RM3 :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore volume :\n"
<< " : Porv volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil SM3 ---------------:-- Wat SM3 --:--------------- Gas SM3 ---------------:\n";
}
if (units.getType() == UnitSystem::UnitType::UNIT_TYPE_FIELD) {
ss << " : PAV =" << std::setw(14) << cip[6] << " PSIA :\n"
<< std::fixed << std::setprecision(0)
<< " : PORV =" << std::setw(14) << cip[5] << " RB :\n";
if (!reg) {
ss << " : Pressure is weighted by hydrocarbon pore voulme :\n"
<< " : Pore volumes are taken at reference conditions :\n";
}
ss << " :--------------- Oil STB ---------------:-- Wat STB --:--------------- Gas MSCF ---------------:\n";
}
ss << " : Liquid Vapour Total : Total : Free Dissolved Total :" << "\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:" << "\n"
<< ":Currently in place :" << std::setw(14) << cip[1] << std::setw(14) << cip[4] << std::setw(14) << (cip[1]+cip[4]) << ":"
<< std::setw(13) << cip[0] << " :" << std::setw(14) << (cip[2]) << std::setw(14) << cip[3] << std::setw(14) << (cip[2] + cip[3]) << ":\n"
<< ":------------------------:------------------------------------------:----------------:------------------------------------------:\n"
<< ":Originally in place :" << std::setw(14) << oip[1] << std::setw(14) << oip[4] << std::setw(14) << (oip[1]+oip[4]) << ":"
<< std::setw(13) << oip[0] << " :" << std::setw(14) << oip[2] << std::setw(14) << oip[3] << std::setw(14) << (oip[2] + oip[3]) << ":\n"
<< ":========================:==========================================:================:==========================================:\n";
OpmLog::note(ss.str());
}
template <class Implementation>
void
SimulatorBase<Implementation>::
updateListEconLimited(const std::unique_ptr<Solver>& solver,
const Schedule& schedule,
const int current_step,
const Wells* wells,
const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const
{
solver->model().wellModel().updateListEconLimited(schedule, current_step, wells,
well_state, list_econ_limited);
}
template <class Implementation>
void
SimulatorBase<Implementation>::
initHysteresisParams(ReservoirState& state)
{
typedef std::vector<double> VectorType;
const VectorType& somax = state.getCellData( "SOMAX" );
VectorType& pcSwMdc_ow = state.getCellData( "PCSWMDC_OW" );
VectorType& krnSwMdc_ow = state.getCellData( "KRNSWMDC_OW" );
VectorType& pcSwMdc_go = state.getCellData( "PCSWMDC_GO" );
VectorType& krnSwMdc_go = state.getCellData( "KRNSWMDC_GO" );
props_.setSatOilMax(somax);
props_.setOilWaterHystParams(pcSwMdc_ow, krnSwMdc_ow, allcells_);
props_.setGasOilHystParams(pcSwMdc_go, krnSwMdc_go, allcells_);
}
} // namespace Opm