Files
opm-simulators/applications/ebos/eclthresholdpressure.hh
Andreas Lauser e769c2768c clean up the licensing preable of source files
the in-file lists of authors has been removed in favor of a global
list of authors in the LICENSE file. this is done because (a)
maintaining a list of authors at the beginning of a file is a major
pain in the a**, (b) the list of authors was not accurate in about 85%
of all cases where more than one person was involved and (c) this list
is not legally binding in any way (the copyright is at the person who
authored a given change, if these lists had any legal relevance, one
could "aquire" the copyright of the module by forking it and removing
the lists...)

the only exception of this is the eWoms fork of dune-istl's solvers.hh
file. This is beneficial because the authors of that file do not
appear in the global list. Further, carrying the fork of that file is
required because we would like to use a reasonable convergence
criterion for the linear solver. (the solvers from dune-istl do
neither support user-defined convergence criteria not do the
developers want support for it. (my patch was rejected a few years
ago.))
2016-03-17 13:20:20 +01:00

302 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::EclThresholdPressure
*/
#ifndef EWOMS_ECL_THRESHOLD_PRESSURE_HH
#define EWOMS_ECL_THRESHOLD_PRESSURE_HH
#include <ewoms/common/propertysystem.hh>
#include <opm/material/localad/Evaluation.hpp>
#include <opm/material/localad/Math.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/Grid/GridProperty.hpp>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/SimulationConfig.hpp>
#include <opm/parser/eclipse/EclipseState/SimulationConfig/ThresholdPressure.hpp>
#include <dune/grid/common/gridenums.hh>
#include <dune/common/version.hh>
#include <array>
#include <vector>
#include <unordered_map>
namespace Ewoms {
namespace Properties {
NEW_PROP_TAG(Simulator);
NEW_PROP_TAG(Scalar);
NEW_PROP_TAG(Evaluation);
NEW_PROP_TAG(ElementContext);
NEW_PROP_TAG(FluidSystem);
}
/*!
* \ingroup EclBlackOilSimulator
*
* \brief This class calculates the threshold pressure for grid faces according to the
* Eclipse Reference Manual.
*
* If the difference of the pressure potential between two cells is below the threshold
* pressure, the pressure potential difference is assumed to be zero, if it is larger
* than the threshold pressure, it is reduced by the threshold pressure.
*/
template <class TypeTag>
class EclThresholdPressure
{
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, Evaluation) Evaluation;
typedef typename GET_PROP_TYPE(TypeTag, ElementContext) ElementContext;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
enum { numPhases = FluidSystem::numPhases };
public:
EclThresholdPressure(const Simulator& simulator)
: simulator_(simulator)
{
enableThresholdPressure_ = false;
}
/*!
* \brief Actually compute the threshold pressures over a face as a pre-compute step.
*/
void finishInit()
{
const auto& gridView = simulator_.gridView();
auto deck = simulator_.gridManager().deck();
unsigned numElements = gridView.size(/*codim=*/0);
// this code assumes that the DOFs are the elements. (i.e., an
// ECFV spatial discretization with TPFA). if you try to use
// it with something else, you're currently out of luck,
// sorry!
assert((int) simulator_.model().numGridDof() == numElements);
const auto& gridManager = simulator_.gridManager();
Opm::EclipseStateConstPtr eclState = gridManager.eclState();
Opm::SimulationConfigConstPtr simConfig = eclState->getSimulationConfig();
enableThresholdPressure_ = simConfig->hasThresholdPressure();
if (!enableThresholdPressure_)
return;
numEquilRegions_ =
deck->getKeyword("EQLDIMS").getRecord(0).getItem("NTEQUL").template get<int>(0);
if (numEquilRegions_ > 0xff) {
// make sure that the index of an equilibration region can be stored in a
// single byte
OPM_THROW(std::runtime_error,
"The maximum number of supported equilibration regions is 255!");
}
// allocate the array which specifies the threshold pressures
thpres_.resize(numEquilRegions_*numEquilRegions_, 0.0);
thpresDefault_.resize(numEquilRegions_*numEquilRegions_, 0.0);
// internalize the data specified using the EQLNUM keyword
const std::vector<int>& equilRegionData =
eclState->getIntGridProperty("EQLNUM")->getData();
elemEquilRegion_.resize(numElements, 0);
for (unsigned elemIdx = 0; elemIdx < numElements; ++elemIdx) {
int cartElemIdx = gridManager.cartesianIndex(elemIdx);
// ECL uses Fortran-style indices but we want C-style ones!
elemEquilRegion_[elemIdx] = equilRegionData[cartElemIdx] - 1;
}
computeDefaultThresholdPressures_();
applyExplicitThresholdPressures_();
}
/*!
* \brief Returns the theshold pressure [Pa] for the intersection between two elements.
*
* This is tailor made for the E100 threshold pressure mechanism and it is thus quite
* a hack: First of all threshold pressures in general are unphysical, and second,
* they should be different for the fluid phase but are not. Anyway, this seems to be
* E100's way of doing things, so we do it the same way.
*/
Scalar thresholdPressure(int elemIdx1, int elemIdx2) const
{
if (!enableThresholdPressure_)
return 0.0;
unsigned short equilRegion1Idx = elemEquilRegion_[elemIdx1];
unsigned short equilRegion2Idx = elemEquilRegion_[elemIdx2];
if (equilRegion1Idx == equilRegion2Idx)
return 0.0;
return thpres_[equilRegion1Idx*numEquilRegions_ + equilRegion2Idx];
}
private:
// compute the defaults of the threshold pressures using the initial condition
void computeDefaultThresholdPressures_()
{
const auto& gridManager = simulator_.gridManager();
const auto& gridView = gridManager.gridView();
typedef Opm::MathToolbox<Evaluation> Toolbox;
// loop over the whole grid and compute the maximum gravity adjusted pressure
// difference between two EQUIL regions.
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
ElementContext elemCtx(simulator_);
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
elemCtx.updateAll(elem);
const auto &stencil = elemCtx.stencil(/*timeIdx=*/0);
for (unsigned scvfIdx = 0; scvfIdx < stencil.numInteriorFaces(); ++ scvfIdx) {
const auto &face = stencil.interiorFace(scvfIdx);
unsigned i = face.interiorIndex();
unsigned j = face.exteriorIndex();
unsigned insideElemIdx = elemCtx.globalSpaceIndex(i, /*timeIdx=*/0);
unsigned outsideElemIdx = elemCtx.globalSpaceIndex(j, /*timeIdx=*/0);
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (equilRegionInside == equilRegionOutside)
continue;
// determine the maximum difference of the pressure of any phase over the
// intersection
Scalar pth = 0;
const auto& extQuants = elemCtx.extensiveQuantities(scvfIdx, /*timeIdx=*/0);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx)
pth = std::max(pth, std::abs(Toolbox::value(extQuants.pressureDifferential(phaseIdx))));
int offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
int offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpresDefault_[offset1] = std::max(thpres_[offset1], pth);
thpresDefault_[offset2] = std::max(thpres_[offset2], pth);
}
}
// make sure that the threshold pressures is consistent for parallel
// runs. (i.e. take the maximum of all processes)
for (unsigned i = 0; i < thpres_.size(); ++i)
thpres_[i] = gridView.comm().max(thpres_[i]);
}
// internalize the threshold pressures which where explicitly specified via the
// THPRES keyword.
void applyExplicitThresholdPressures_()
{
const auto& gridManager = simulator_.gridManager();
const auto& gridView = gridManager.gridView();
const auto& elementMapper = simulator_.model().elementMapper();
const auto& eclState = simulator_.gridManager().eclState();
Opm::SimulationConfigConstPtr simConfig = eclState->getSimulationConfig();
Opm::ThresholdPressureConstPtr thpres = simConfig->getThresholdPressure();
// set the threshold pressures for all EQUIL region boundaries which have a
// intersection in the grid
auto elemIt = gridView.template begin</*codim=*/ 0>();
const auto& elemEndIt = gridView.template end</*codim=*/ 0>();
for (; elemIt != elemEndIt; ++elemIt) {
const auto& elem = *elemIt;
if (elem.partitionType() != Dune::InteriorEntity)
continue;
auto isIt = gridView.ibegin(elem);
const auto& isEndIt = gridView.iend(elem);
for (; isIt != isEndIt; ++ isIt) {
// store intersection, this might be costly
const auto& intersection = *isIt;
// ignore boundary intersections for now (TODO?)
if (intersection.boundary())
continue;
const auto& inside = intersection.inside();
const auto& outside = intersection.outside();
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2,4)
unsigned insideElemIdx = elementMapper.index(inside);
unsigned outsideElemIdx = elementMapper.index(outside);
#else
unsigned insideElemIdx = elementMapper.map(*inside);
unsigned outsideElemIdx = elementMapper.map(*outside);
#endif
unsigned equilRegionInside = elemEquilRegion_[insideElemIdx];
unsigned equilRegionOutside = elemEquilRegion_[outsideElemIdx];
if (thpres->hasRegionBarrier(equilRegionInside + 1, equilRegionOutside + 1) ||
thpres->hasRegionBarrier(equilRegionOutside + 1, equilRegionInside + 1))
{
Scalar pth = 0.0;
if (thpres->hasThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1)) {
// threshold pressure explicitly specified
pth = thpres->getThresholdPressure(equilRegionInside + 1, equilRegionOutside + 1);
}
else if (thpres->hasThresholdPressure(equilRegionOutside + 1, equilRegionInside + 1)) {
// threshold pressure explicitly specified
pth = thpres->getThresholdPressure(equilRegionOutside + 1, equilRegionInside + 1);
}
else {
// take the threshold pressure from the initial condition
unsigned offset = equilRegionInside*numEquilRegions_ + equilRegionOutside;
pth = thpresDefault_[offset];
}
unsigned offset1 = equilRegionInside*numEquilRegions_ + equilRegionOutside;
unsigned offset2 = equilRegionOutside*numEquilRegions_ + equilRegionInside;
thpres_[offset1] = pth;
thpres_[offset2] = pth;
}
}
}
}
const Simulator& simulator_;
std::vector<Scalar> thpresDefault_;
std::vector<Scalar> thpres_;
unsigned numEquilRegions_;
std::vector<unsigned char> elemEquilRegion_;
bool enableThresholdPressure_;
};
} // namespace Ewoms
#endif