opm-simulators/opm/simulators/linalg/bda/WellContributions.hpp
Arne Morten Kvarving e25caba8ed changed: refactor BDA well contributions
split in API specific classes for Cuda/OpenCL

this to
1) it's cleaner
2) it avoids pulling in openCL code in cuda classes which leads
to clashes between nvidia headers and opencl.hpp

there is still too much API specific things in interface between the
bda components to work through a virtual interface so we still have to cast
to the relevant implementation in various places.
2021-11-11 14:49:33 +01:00

140 lines
6.7 KiB
C++

/*
Copyright 2020 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef WELLCONTRIBUTIONS_HEADER_INCLUDED
#define WELLCONTRIBUTIONS_HEADER_INCLUDED
#include <memory>
#include <vector>
#include <opm/simulators/linalg/bda/MultisegmentWellContribution.hpp>
#if HAVE_SUITESPARSE_UMFPACK
#include<umfpack.h>
#endif
#include <dune/common/version.hh>
namespace Opm
{
/// This class serves to eliminate the need to include the WellContributions into the matrix (with --matrix-add-well-contributions=true) for the cusparseSolver
/// If the --matrix-add-well-contributions commandline parameter is true, this class should not be used
/// So far, StandardWell and MultisegmentWell are supported
/// StandardWells are only supported for cusparseSolver (CUDA), MultisegmentWells are supported for both cusparseSolver and openclSolver
/// A single instance (or pointer) of this class is passed to the BdaSolver.
/// For StandardWell, this class contains all the data and handles the computation. For MultisegmentWell, the vector 'multisegments' contains all the data. For more information, check the MultisegmentWellContribution class.
/// A StandardWell uses C, D and B and performs y -= (C^T * (D^-1 * (B*x)))
/// B and C are vectors, disguised as matrices and contain blocks of StandardWell::numEq by StandardWell::numStaticWellEq
/// D is a block, disguised as matrix, the square block has size StandardWell::numStaticWellEq. D is actually stored as D^-1
/// B*x and D*B*x are a vector with numStaticWellEq doubles
/// C*D*B*x is a blocked matrix with a symmetric sparsity pattern, contains square blocks with size numEq. For every columnindex i, j in StandardWell::duneB_, there is a block on (i, j) in C*D*B*x.
///
/// This class is used in 3 phases:
/// - get total size of all wellcontributions that must be stored here
/// - allocate memory
/// - copy data of wellcontributions
class WellContributions
{
public:
static std::unique_ptr<WellContributions> create(const std::string& accelerator_mode, bool useWellConn);
#if DUNE_VERSION_NEWER(DUNE_ISTL, 2, 7)
using UMFPackIndex = SuiteSparse_long;
#else
using UMFPackIndex = int;
#endif
/// StandardWell has C, D and B matrices that need to be copied
enum class MatrixType {
C,
D,
B
};
protected:
bool allocated = false;
unsigned int N; // number of rows (not blockrows) in vectors x and y
unsigned int dim; // number of columns in blocks in B and C, equal to StandardWell::numEq
unsigned int dim_wells; // number of rows in blocks in B and C, equal to StandardWell::numStaticWellEq
unsigned int num_blocks = 0; // total number of blocks in all wells
unsigned int num_std_wells = 0; // number of StandardWells in this object
unsigned int num_ms_wells = 0; // number of MultisegmentWells in this object, must equal multisegments.size()
unsigned int num_blocks_so_far = 0; // keep track of where next data is written
unsigned int num_std_wells_so_far = 0; // keep track of where next data is written
std::vector<unsigned int> val_pointers; // val_pointers[wellID] == index of first block for this well in Ccols and Bcols
std::vector<std::unique_ptr<MultisegmentWellContribution>> multisegments;
public:
unsigned int getNumWells(){
return num_std_wells + num_ms_wells;
}
/// Indicate how large the next StandardWell is, this function cannot be called after alloc() is called
/// \param[in] numBlocks number of blocks in C and B of next StandardWell
void addNumBlocks(unsigned int numBlocks);
/// Allocate memory for the StandardWells
void alloc();
/// Empty destructor.
virtual ~WellContributions() = default;
/// Indicate how large the blocks of the StandardWell (C and B) are
/// \param[in] dim number of columns
/// \param[in] dim_wells number of rows
void setBlockSize(unsigned int dim, unsigned int dim_wells);
/// Store a matrix in this object, in blocked csr format, can only be called after alloc() is called
/// \param[in] type indicate if C, D or B is sent
/// \param[in] colIndices columnindices of blocks in C or B, ignored for D
/// \param[in] values array of nonzeroes
/// \param[in] val_size number of blocks in C or B, ignored for D
void addMatrix(MatrixType type, int *colIndices, double *values, unsigned int val_size);
/// Add a MultisegmentWellContribution, actually creates an object on heap that is destroyed in the destructor
/// Matrices C and B are passed in Blocked CSR, matrix D in CSC
/// \param[in] dim size of blocks in vectors x and y, equal to MultisegmentWell::numEq
/// \param[in] dim_wells size of blocks of C, B and D, equal to MultisegmentWell::numWellEq
/// \param[in] Mb number of blockrows in C, B and D
/// \param[in] Bvalues nonzero values of matrix B
/// \param[in] BcolIndices columnindices of blocks of matrix B
/// \param[in] BrowPointers rowpointers of matrix B
/// \param[in] DnumBlocks number of blocks in D
/// \param[in] Dvalues nonzero values of matrix D
/// \param[in] DcolPointers columnpointers of matrix D
/// \param[in] DrowIndices rowindices of matrix D
/// \param[in] Cvalues nonzero values of matrix C
void addMultisegmentWellContribution(unsigned int dim, unsigned int dim_wells,
unsigned int Mb,
std::vector<double> &Bvalues, std::vector<unsigned int> &BcolIndices, std::vector<unsigned int> &BrowPointers,
unsigned int DnumBlocks, double *Dvalues,
UMFPackIndex *DcolPointers, UMFPackIndex *DrowIndices,
std::vector<double> &Cvalues);
protected:
//! \brief API specific allocation.
virtual void APIalloc() {}
/// Api specific upload of matrix.
virtual void APIaddMatrix(MatrixType, int*, double*, unsigned int) {}
};
} //namespace Opm
#endif