mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-11-26 03:00:17 -06:00
e876e32c36
for emacs, add a toplevel .dir-locals.el file instead...
413 lines
13 KiB
C++
413 lines
13 KiB
C++
/*
|
|
Copyright (C) 2008-2013 by Andreas Lauser
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Ewoms::RichardsLensProblem
|
|
*/
|
|
#ifndef EWOMS_RICHARDS_LENS_PROBLEM_HH
|
|
#define EWOMS_RICHARDS_LENS_PROBLEM_HH
|
|
|
|
#include <ewoms/models/richards/richardsmodel.hh>
|
|
|
|
#include <opm/material/components/SimpleH2O.hpp>
|
|
#include <opm/material/fluidsystems/LiquidPhase.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/RegularizedVanGenuchten.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
|
|
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
|
|
|
|
#include <dune/grid/io/file/dgfparser.hh>
|
|
|
|
#include <dune/common/version.hh>
|
|
#include <dune/common/fvector.hh>
|
|
#include <dune/common/fmatrix.hh>
|
|
|
|
namespace Ewoms {
|
|
template <class TypeTag>
|
|
class RichardsLensProblem;
|
|
}
|
|
|
|
namespace Opm {
|
|
namespace Properties {
|
|
NEW_TYPE_TAG(RichardsLensProblem, Richards);
|
|
|
|
// Use 2d YaspGrid
|
|
SET_TYPE_PROP(RichardsLensProblem, Grid, Dune::YaspGrid<2>);
|
|
|
|
// Set the physical problem to be solved
|
|
SET_PROP(RichardsLensProblem, Problem)
|
|
{
|
|
typedef Ewoms::RichardsLensProblem<TypeTag> type;
|
|
};
|
|
|
|
// Set the wetting phase
|
|
SET_PROP(RichardsLensProblem, WettingPhase)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
public:
|
|
typedef Opm::LiquidPhase<Scalar, Opm::SimpleH2O<Scalar> > type;
|
|
};
|
|
|
|
// Set the material Law
|
|
SET_PROP(RichardsLensProblem, MaterialLaw)
|
|
{
|
|
private:
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
enum { wPhaseIdx = FluidSystem::wPhaseIdx };
|
|
enum { nPhaseIdx = FluidSystem::nPhaseIdx };
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
typedef Opm::TwoPhaseMaterialTraits<Scalar,
|
|
/*wettingPhaseIdx=*/FluidSystem::wPhaseIdx,
|
|
/*nonWettingPhaseIdx=*/FluidSystem::nPhaseIdx>
|
|
Traits;
|
|
|
|
// define the material law which is parameterized by effective
|
|
// saturations
|
|
typedef Opm::RegularizedVanGenuchten<Traits> EffectiveLaw;
|
|
|
|
public:
|
|
// define the material law parameterized by absolute saturations
|
|
typedef Opm::EffToAbsLaw<EffectiveLaw> type;
|
|
};
|
|
|
|
// Enable gravitational acceleration
|
|
SET_BOOL_PROP(RichardsLensProblem, EnableGravity, true);
|
|
|
|
// Enable partial reassembly of the Jacobian matrix
|
|
SET_BOOL_PROP(RichardsLensProblem, EnablePartialReassemble, true);
|
|
|
|
// Enable re-use of the Jacobian matrix of the last iteration of the
|
|
// previous for the first iteration of the current time step?
|
|
SET_BOOL_PROP(RichardsLensProblem, EnableJacobianRecycling, true);
|
|
|
|
// Use forward differences to approximate the Jacobian matrix
|
|
SET_INT_PROP(RichardsLensProblem, NumericDifferenceMethod, +1);
|
|
|
|
// Set the maximum number of newton iterations of a time step
|
|
SET_INT_PROP(RichardsLensProblem, NewtonMaxIterations, 28);
|
|
|
|
// Set the "desireable" number of newton iterations of a time step
|
|
SET_INT_PROP(RichardsLensProblem, NewtonTargetIterations, 18);
|
|
|
|
// Do not write the intermediate results of the newton method
|
|
SET_BOOL_PROP(RichardsLensProblem, NewtonWriteConvergence, false);
|
|
|
|
// The default for the end time of the simulation
|
|
SET_SCALAR_PROP(RichardsLensProblem, EndTime, 3000);
|
|
|
|
// The default for the initial time step size of the simulation
|
|
SET_SCALAR_PROP(RichardsLensProblem, InitialTimeStepSize, 100);
|
|
|
|
// The default DGF file to load
|
|
SET_STRING_PROP(RichardsLensProblem, GridFile,
|
|
"./grids/richardslens_24x16.dgf");
|
|
} // namespace Properties
|
|
} // namespace Opm
|
|
|
|
namespace Ewoms {
|
|
/*!
|
|
* \ingroup VcfvTestProblems
|
|
*
|
|
* \brief A water infiltration problem with a low-permeability lens
|
|
* embedded into a high-permeability domain.
|
|
*
|
|
* The domain is rectangular. The left and right boundaries are
|
|
* free-flow boundaries with fixed water pressure which corrosponds to
|
|
* a fixed saturation of \f$S_w = 0\f$ in the Richards model, the
|
|
* bottom boundary is closed. The top boundary is also closed except
|
|
* for an infiltration section, where water is infiltrating into an
|
|
* initially unsaturated porous medium. This problem is very similar
|
|
* the the \c LensProblem, with the main difference being that the domain
|
|
* is initally fully saturated by gas instead of water and water
|
|
* instead of a \c DNAPL infiltrates from the top.
|
|
*/
|
|
template <class TypeTag>
|
|
class RichardsLensProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
|
|
{
|
|
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
|
|
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag,
|
|
BoundaryRateVector) BoundaryRateVector;
|
|
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
|
|
typedef typename GET_PROP_TYPE(TypeTag, TimeManager) TimeManager;
|
|
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
|
|
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
|
|
|
|
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
|
|
enum {
|
|
// copy some indices for convenience
|
|
pressureWIdx = Indices::pressureWIdx,
|
|
contiWEqIdx = Indices::contiWEqIdx,
|
|
wPhaseIdx = GET_PROP_VALUE(TypeTag, LiquidPhaseIndex),
|
|
nPhaseIdx = 1 - wPhaseIdx,
|
|
numPhases = FluidSystem::numPhases,
|
|
|
|
// Grid and world dimension
|
|
dimWorld = GridView::dimensionworld
|
|
};
|
|
|
|
// get the material law from the property system
|
|
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
|
|
//! The parameters of the material law to be used
|
|
typedef typename MaterialLaw::Params MaterialLawParams;
|
|
|
|
typedef typename GridView::ctype CoordScalar;
|
|
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
|
|
typedef Dune::FieldVector<Scalar, numPhases> PhaseVector;
|
|
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
|
|
|
|
public:
|
|
/*!
|
|
* \copydoc Doxygen::defaultProblemConstructor
|
|
*/
|
|
RichardsLensProblem(TimeManager &timeManager)
|
|
#if DUNE_VERSION_NEWER(DUNE_COMMON, 2, 3)
|
|
: ParentType(timeManager,
|
|
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafGridView()),
|
|
#else
|
|
: ParentType(timeManager,
|
|
GET_PROP_TYPE(TypeTag, GridCreator)::grid().leafView()),
|
|
#endif
|
|
pnRef_(1e5)
|
|
{
|
|
eps_ = 3e-6;
|
|
pnRef_ = 1e5;
|
|
|
|
lensLowerLeft_[0] = 1.0;
|
|
lensLowerLeft_[1] = 2.0;
|
|
|
|
lensUpperRight_[0] = 4.0;
|
|
lensUpperRight_[1] = 3.0;
|
|
|
|
// parameters for the Van Genuchten law
|
|
// alpha and n
|
|
lensMaterialParams_.setVgAlpha(0.00045);
|
|
lensMaterialParams_.setVgN(7.3);
|
|
lensMaterialParams_.finalize();
|
|
|
|
outerMaterialParams_.setVgAlpha(0.0037);
|
|
outerMaterialParams_.setVgN(4.7);
|
|
outerMaterialParams_.finalize();
|
|
|
|
// parameters for the linear law
|
|
// minimum and maximum pressures
|
|
// lensMaterialParams_.setEntryPC(0);
|
|
// outerMaterialParams_.setEntryPC(0);
|
|
// lensMaterialParams_.setMaxPC(0);
|
|
// outerMaterialParams_.setMaxPC(0);
|
|
|
|
lensK_ = this->toDimMatrix_(1e-12);
|
|
outerK_ = this->toDimMatrix_(5e-12);
|
|
}
|
|
|
|
/*!
|
|
* \name Problem parameters
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::name
|
|
*/
|
|
const char *name() const
|
|
{ return "lens_richards"; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::temperature
|
|
*/
|
|
template <class Context>
|
|
Scalar temperature(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return 273.15 + 10; } // -> 10°C
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
|
|
*/
|
|
template <class Context>
|
|
const DimMatrix &intrinsicPermeability(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
const GlobalPosition &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isInLens_(pos))
|
|
return lensK_;
|
|
return outerK_;
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::porosity
|
|
*/
|
|
template <class Context>
|
|
Scalar porosity(const Context &context, int spaceIdx, int timeIdx) const
|
|
{ return 0.4; }
|
|
|
|
/*!
|
|
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
|
|
*/
|
|
template <class Context>
|
|
const MaterialLawParams &materialLawParams(const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
|
if (isInLens_(pos))
|
|
return lensMaterialParams_;
|
|
return outerMaterialParams_;
|
|
}
|
|
|
|
/*!
|
|
* \brief Return the reference pressure [Pa] of the wetting phase.
|
|
*
|
|
* \copydetails Doxygen::contextParams
|
|
*/
|
|
template <class Context>
|
|
Scalar referencePressure(const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ return pnRef_; }
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Boundary conditions
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::boundary
|
|
*/
|
|
template <class Context>
|
|
void boundary(BoundaryRateVector &values, const Context &context,
|
|
int spaceIdx, int timeIdx) const
|
|
{
|
|
const auto &pos = context.pos(spaceIdx, timeIdx);
|
|
|
|
if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
|
|
const auto &materialParams
|
|
= this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Scalar Sw = 0.0;
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setSaturation(wPhaseIdx, Sw);
|
|
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
|
|
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
fs.setPressure(wPhaseIdx, pnRef_ + pC[wPhaseIdx] - pC[nPhaseIdx]);
|
|
fs.setPressure(nPhaseIdx, pnRef_);
|
|
|
|
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
|
|
}
|
|
else if (onInlet_(pos)) {
|
|
RateVector massRate(0.0);
|
|
|
|
// inflow of water
|
|
massRate[contiWEqIdx] = -0.04; // kg / (m * s)
|
|
|
|
values.setMassRate(massRate);
|
|
}
|
|
else
|
|
values.setNoFlow();
|
|
}
|
|
|
|
//! \}
|
|
|
|
/*!
|
|
* \name Volume terms
|
|
*/
|
|
//! \{
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::initial
|
|
*/
|
|
template <class Context>
|
|
void initial(PrimaryVariables &values, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{
|
|
const auto &materialParams
|
|
= this->materialLawParams(context, spaceIdx, timeIdx);
|
|
|
|
Scalar Sw = 0.0;
|
|
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
|
|
fs.setSaturation(wPhaseIdx, Sw);
|
|
fs.setSaturation(nPhaseIdx, 1.0 - Sw);
|
|
|
|
PhaseVector pC;
|
|
MaterialLaw::capillaryPressures(pC, materialParams, fs);
|
|
values[pressureWIdx] = pnRef_ + (pC[wPhaseIdx] - pC[nPhaseIdx]);
|
|
}
|
|
|
|
/*!
|
|
* \copydoc VcfvProblem::source
|
|
*
|
|
* For this problem, the source term of all components is 0
|
|
* everywhere.
|
|
*/
|
|
template <class Context>
|
|
void source(RateVector &rate, const Context &context, int spaceIdx,
|
|
int timeIdx) const
|
|
{ rate = Scalar(0.0); }
|
|
|
|
//! \}
|
|
|
|
private:
|
|
bool onLeftBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] < this->boundingBoxMin()[0] + eps_; }
|
|
|
|
bool onRightBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
|
|
|
|
bool onLowerBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] < this->boundingBoxMin()[1] + eps_; }
|
|
|
|
bool onUpperBoundary_(const GlobalPosition &pos) const
|
|
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
|
|
|
|
bool onInlet_(const GlobalPosition &pos) const
|
|
{
|
|
Scalar width = this->boundingBoxMax()[0] - this->boundingBoxMin()[0];
|
|
Scalar lambda = (this->boundingBoxMax()[0] - pos[0]) / width;
|
|
return onUpperBoundary_(pos) && 0.5 < lambda && lambda < 2.0 / 3.0;
|
|
}
|
|
|
|
bool isInLens_(const GlobalPosition &pos) const
|
|
{
|
|
for (int i = 0; i < dimWorld; ++i) {
|
|
if (pos[i] < lensLowerLeft_[i] || pos[i] > lensUpperRight_[i])
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
GlobalPosition lensLowerLeft_;
|
|
GlobalPosition lensUpperRight_;
|
|
|
|
DimMatrix lensK_;
|
|
DimMatrix outerK_;
|
|
MaterialLawParams lensMaterialParams_;
|
|
MaterialLawParams outerMaterialParams_;
|
|
|
|
Scalar eps_;
|
|
Scalar pnRef_;
|
|
};
|
|
} // namespace Ewoms
|
|
|
|
#endif
|