opm-simulators/ImpesTPFAAD.hpp
Bård Skaflestad a13d78bb06 Start fleshing out overall structure of Newton loop
Specifically,
  - Extract method solveJacobianSystem() for solving a single,
    system of linear equations (i.e., the Newton step).
  - Extract method residualNorm() for computing the residual norm.
    Used in loop control.
  - Stub out a method for computing fluxes.

Compile and run-tested on a linear, gravity-driven flow problem.
2013-05-14 13:40:56 +02:00

440 lines
15 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
Copyright 2013 Statoil ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_IMPESTPFAAD_HEADER_INCLUDED
#define OPM_IMPESTPFAAD_HEADER_INCLUDED
#include "AutoDiffBlock.hpp"
#include "AutoDiffHelpers.hpp"
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/wells.h>
#include <algorithm>
#include <cassert>
#include <vector>
#include <boost/shared_ptr.hpp>
struct UnstructuredGrid;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class GeoProps>
AutoDiff::ForwardBlock<double>::M
gravityOperator(const UnstructuredGrid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
const int nc = grid.number_of_cells;
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
for (int c = 0, i = 0; c < nc; ++c) {
for (; i < grid.cell_facepos[c + 1]; ++i) {
const int f = grid.cell_faces[ i ];
const int p = 0 + (grid.face_cells[2*f + 0] != c);
f2hf[2*f + p] = i;
}
}
typedef AutoDiff::ForwardBlock<double>::V V;
typedef AutoDiff::ForwardBlock<double>::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = grid.face_cells[2*f + 0];
const int c2 = grid.face_cells[2*f + 1];
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
}
namespace Opm {
template <typename Scalar, class BOFluid>
class PressureDependentFluidData {
public:
typedef AutoDiff::ForwardBlock<Scalar> ADB;
typedef typename AutoDiff::ForwardBlock<Scalar>::V V;
typedef typename AutoDiff::ForwardBlock<Scalar>::M M;
PressureDependentFluidData(const int nc,
const BOFluid& fluid)
: nc_ (nc)
, np_ (fluid.numPhases())
, cells_(buildAllCells(nc))
, fluid_(fluid)
, A_ (nc_, np_ * np_)
, dA_ (nc_, np_ * np_)
, mu_ (nc_, np_ )
, dmu_ (nc_, np_ )
, kr_ (nc_, np_ )
, zero_ (ADB::V::Zero(nc, 1))
, one_ (ADB::V::Ones(nc, 1))
{
}
void
computeSatQuant(const BlackoilState& state)
{
const std::vector<double>& s = state.saturation();
assert (s.size() == std::vector<double>::size_type(nc_ * np_));
double* dkrds = 0; // Ignore rel-perm derivatives
fluid_.relperm(nc_, & s[0], & cells_[0],
kr_.data(), dkrds);
}
void
computePressQuant(const BlackoilState& state)
{
const std::vector<double>& p = state.pressure();
const std::vector<double>& z = state.surfacevol();
assert (p.size() == std::vector<double>::size_type(nc_ * 1 ));
assert (z.size() == std::vector<double>::size_type(nc_ * np_));
fluid_.matrix (nc_, & p[0], & z[0], & cells_[0],
A_ .data(), dA_ .data());
fluid_.viscosity(nc_, & p[0], & z[0], & cells_[0],
mu_.data(), /*dmu_.data()*/ 0);
}
ADB
fvf(const int phase, const ADB& p) const
{
assert (0 <= phase);
assert (phase < np_ );
typedef typename ADB::V V;
const V A = A_ .block(0, phase * (np_ + 1), nc_, 1);
const V dA = dA_.block(0, phase * (np_ + 1), nc_, 1);
std::vector<typename ADB::M> jac(p.numBlocks());
assert(p.numBlocks() == 2);
jac[0] = spdiag(dA);
assert(jac[0].cols() == p.blockPattern()[0]);
jac[1] = M(A.rows(), p.blockPattern()[1]);
return one_ / ADB::function(A, jac);
}
typename ADB::V
phaseRelPerm(const int phase) const
{
const typename ADB::V kr = kr_.block(0, phase, nc_, 1);
return kr;
}
ADB
phaseViscosity(const int phase, const ADB& p) const
{
assert (0 <= phase);
assert (phase < np_ );
typedef typename ADB::V V;
const V mu = mu_ .block(0, phase, nc_, 1);
const V dmu = dmu_.block(0, phase, nc_, 1);
std::vector<typename ADB::M> jac(p.numBlocks());
assert(p.numBlocks() == 2);
jac[0] = spdiag(dmu);
assert(jac[0].cols() == p.blockPattern()[0]);
jac[1] = M(mu.rows(), p.blockPattern()[1]);
return ADB::function(mu, jac);
}
ADB
phaseDensity(const int phase, const ADB& p) const
{
typedef typename ADB::V V;
const double* rho0 = fluid_.surfaceDensity();
V rho = V::Zero(nc_, 1);
V drho = V::Zero(nc_, 1);
for (int i = 0; i < np_; ++i) {
rho += rho0[i] * A_ .block(0, phase*np_ + i, nc_, 1);
drho += rho0[i] * dA_.block(0, phase*np_ + i, nc_, 1);
}
assert (p.numBlocks() == 2);
std::vector<typename ADB::M> jac(p.numBlocks());
jac[0] = spdiag(drho);
jac[1] = M(rho.rows(), p.blockPattern()[1]);
assert (jac[0].cols() == p.blockPattern()[0]);
return ADB::function(rho, jac);
}
private:
const int nc_;
const int np_;
const std::vector<int> cells_;
const BOFluid& fluid_;
typedef Eigen::Array<Scalar,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DerivedQuant;
// Pressure dependent quantities (essentially B and \mu)
DerivedQuant A_ ;
DerivedQuant dA_ ;
DerivedQuant mu_ ;
DerivedQuant dmu_;
// Saturation dependent quantities (rel-perm only)
DerivedQuant kr_;
const typename ADB::V zero_;
const typename ADB::V one_ ;
};
template <class BOFluid, class GeoProps>
class ImpesTPFAAD {
public:
ImpesTPFAAD(const UnstructuredGrid& grid ,
const BOFluid& fluid,
const GeoProps& geo ,
const Wells& wells,
const LinearSolverInterface& linsolver)
: grid_ (grid)
, geo_ (geo)
, wells_ (wells)
, linsolver_(linsolver)
, pdepfdata_(grid.number_of_cells, fluid)
, ops_ (grid)
, grav_ (gravityOperator(grid_, ops_, geo_))
, cell_residual_ (ADB::null())
, well_residual_ (ADB::null())
{
}
void
solve(const double dt,
BlackoilState& state,
WellState& well_state)
{
pdepfdata_.computeSatQuant(state);
const double atol = 1.0e-9;
const double rtol = 5.0e-10;
const int maxit = 15;
assemble(dt, state, well_state);
const double r0 = residualNorm();
int it = 0;
bool resTooLarge = r0 > atol;
while (resTooLarge && (it < maxit)) {
solveJacobianSystem(state);
assemble(dt, state, well_state);
const double r = residualNorm();
resTooLarge = (r > atol) && (r > rtol*r0);
it += 1;
}
if (resTooLarge) {
THROW("Failed to compute converged pressure solution");
}
else {
computeFluxes();
}
}
private:
// Disallow copying and assignment
ImpesTPFAAD(const ImpesTPFAAD& rhs);
ImpesTPFAAD& operator=(const ImpesTPFAAD& rhs);
typedef PressureDependentFluidData<double, BOFluid> PDepFData;
typedef typename PDepFData::ADB ADB;
typedef typename ADB::V V;
typedef typename ADB::M M;
const UnstructuredGrid& grid_;
const GeoProps& geo_ ;
const Wells& wells_;
const LinearSolverInterface& linsolver_;
PDepFData pdepfdata_;
HelperOps ops_;
const M grav_;
ADB cell_residual_;
ADB well_residual_;
void
assemble(const double dt,
const BlackoilState& state,
const WellState& well_state)
{
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
const V& pv = geo_.poreVolume();
const int nc = grid_.number_of_cells;
const int np = state.numPhases();
const int nw = wells_.number_of_wells;
pdepfdata_.computePressQuant(state);
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
const DataBlock qall = DataBlock::Zero(nc, np);
const V delta_t = dt * V::Ones(nc, 1);
const V transi = subset(geo_.transmissibility(),
ops_.internal_faces);
const std::vector<int> well_cells(wells_.well_cells,
wells_.well_cells + wells_.well_connpos[nw]);
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
std::vector<V> vars0 = { p0, bhp0 };
std::vector<ADB> vars= ADB::variables(vars0);
const ADB& p = vars[0];
const ADB& bhp = vars[1];
std::vector<int> bpat = p.blockPattern();
// Compute T_ij * (p_i - p_j) and use for upwinding.
const ADB nkgradp = transi * (ops_.ngrad * p);
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(p, well_cells);
// Construct matrix to map wells->perforations.
M well_to_perf(well_cells.size(), nw);
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> w2p;
for (int w = 0; w < nw; ++w) {
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
w2p.emplace_back(perf, w, 1.0);
}
}
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
// Construct pressure difference vector for wells.
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
// Finally construct well perforation pressures.
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
cell_residual_ = ADB::constant(pv, bpat);
for (int phase = 0; phase < np; ++phase) {
const ADB cell_B = pdepfdata_.fvf(phase, p);
const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
const V kr = pdepfdata_.phaseRelPerm(phase);
const ADB mu = pdepfdata_.phaseViscosity(phase, p);
const ADB mf = upwind.select(kr / mu);
const ADB flux = mf * (nkgradp + (grav_ * cell_rho));
const ADB face_B = upwind.select(cell_B);
const V z0 = z0all.block(0, phase, nc, 1);
const V q = qall .block(0, phase, nc, 1);
ADB component_contrib = pv*z0 + delta_t*(q - (ops_.div * (flux / face_B)));
cell_residual_ = cell_residual_ - (cell_B * component_contrib);
}
}
void
solveJacobianSystem(BlackoilState& state) const
{
const int nc = grid_.number_of_cells;
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = cell_residual_.derivative()[0];
#if HACK_INCOMPRESSIBLE_GRAVITY
matr.coeffRef(0, 0) *= 2;
#endif
V dp(nc);
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
Opm::LinearSolverInterface::LinearSolverReport rep
= linsolver_.solve(nc, matr.nonZeros(),
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
cell_residual_.value().data(), dp.data());
if (!rep.converged) {
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
}
const V p = p0 - dp;
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
}
double
residualNorm() const
{
return cell_residual_.value().matrix().norm();
}
void
computeFluxes() const
{
}
};
} // namespace Opm
#endif /* OPM_IMPESTPFAAD_HEADER_INCLUDED */