mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-18 21:22:57 -06:00
a13d78bb06
Specifically, - Extract method solveJacobianSystem() for solving a single, system of linear equations (i.e., the Newton step). - Extract method residualNorm() for computing the residual norm. Used in loop control. - Stub out a method for computing fluxes. Compile and run-tested on a linear, gravity-driven flow problem.
440 lines
15 KiB
C++
440 lines
15 KiB
C++
/*
|
|
Copyright 2013 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2013 Statoil ASA.
|
|
|
|
This file is part of the Open Porous Media Project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_IMPESTPFAAD_HEADER_INCLUDED
|
|
#define OPM_IMPESTPFAAD_HEADER_INCLUDED
|
|
|
|
#include "AutoDiffBlock.hpp"
|
|
#include "AutoDiffHelpers.hpp"
|
|
|
|
#include <opm/core/simulator/BlackoilState.hpp>
|
|
#include <opm/core/simulator/WellState.hpp>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/wells.h>
|
|
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <vector>
|
|
|
|
#include <boost/shared_ptr.hpp>
|
|
|
|
struct UnstructuredGrid;
|
|
|
|
namespace {
|
|
std::vector<int>
|
|
buildAllCells(const int nc)
|
|
{
|
|
std::vector<int> all_cells(nc);
|
|
|
|
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
|
|
|
|
return all_cells;
|
|
}
|
|
|
|
template <class GeoProps>
|
|
AutoDiff::ForwardBlock<double>::M
|
|
gravityOperator(const UnstructuredGrid& grid,
|
|
const HelperOps& ops ,
|
|
const GeoProps& geo )
|
|
{
|
|
const int nc = grid.number_of_cells;
|
|
|
|
std::vector<int> f2hf(2 * grid.number_of_faces, -1);
|
|
for (int c = 0, i = 0; c < nc; ++c) {
|
|
for (; i < grid.cell_facepos[c + 1]; ++i) {
|
|
const int f = grid.cell_faces[ i ];
|
|
const int p = 0 + (grid.face_cells[2*f + 0] != c);
|
|
|
|
f2hf[2*f + p] = i;
|
|
}
|
|
}
|
|
|
|
typedef AutoDiff::ForwardBlock<double>::V V;
|
|
typedef AutoDiff::ForwardBlock<double>::M M;
|
|
|
|
const V& gpot = geo.gravityPotential();
|
|
const V& trans = geo.transmissibility();
|
|
|
|
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
|
|
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> grav; grav.reserve(2 * ni);
|
|
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
|
|
const int f = ops.internal_faces[ i ];
|
|
const int c1 = grid.face_cells[2*f + 0];
|
|
const int c2 = grid.face_cells[2*f + 1];
|
|
|
|
assert ((c1 >= 0) && (c2 >= 0));
|
|
|
|
const double dG1 = gpot[ f2hf[2*f + 0] ];
|
|
const double dG2 = gpot[ f2hf[2*f + 1] ];
|
|
const double t = trans[ f ];
|
|
|
|
grav.push_back(Tri(i, c1, t * dG1));
|
|
grav.push_back(Tri(i, c2, - t * dG2));
|
|
}
|
|
|
|
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
|
|
|
|
return G;
|
|
}
|
|
}
|
|
|
|
namespace Opm {
|
|
|
|
|
|
template <typename Scalar, class BOFluid>
|
|
class PressureDependentFluidData {
|
|
public:
|
|
typedef AutoDiff::ForwardBlock<Scalar> ADB;
|
|
typedef typename AutoDiff::ForwardBlock<Scalar>::V V;
|
|
typedef typename AutoDiff::ForwardBlock<Scalar>::M M;
|
|
|
|
PressureDependentFluidData(const int nc,
|
|
const BOFluid& fluid)
|
|
: nc_ (nc)
|
|
, np_ (fluid.numPhases())
|
|
, cells_(buildAllCells(nc))
|
|
, fluid_(fluid)
|
|
, A_ (nc_, np_ * np_)
|
|
, dA_ (nc_, np_ * np_)
|
|
, mu_ (nc_, np_ )
|
|
, dmu_ (nc_, np_ )
|
|
, kr_ (nc_, np_ )
|
|
, zero_ (ADB::V::Zero(nc, 1))
|
|
, one_ (ADB::V::Ones(nc, 1))
|
|
{
|
|
}
|
|
|
|
void
|
|
computeSatQuant(const BlackoilState& state)
|
|
{
|
|
const std::vector<double>& s = state.saturation();
|
|
|
|
assert (s.size() == std::vector<double>::size_type(nc_ * np_));
|
|
|
|
double* dkrds = 0; // Ignore rel-perm derivatives
|
|
fluid_.relperm(nc_, & s[0], & cells_[0],
|
|
kr_.data(), dkrds);
|
|
}
|
|
|
|
void
|
|
computePressQuant(const BlackoilState& state)
|
|
{
|
|
const std::vector<double>& p = state.pressure();
|
|
const std::vector<double>& z = state.surfacevol();
|
|
|
|
assert (p.size() == std::vector<double>::size_type(nc_ * 1 ));
|
|
assert (z.size() == std::vector<double>::size_type(nc_ * np_));
|
|
|
|
fluid_.matrix (nc_, & p[0], & z[0], & cells_[0],
|
|
A_ .data(), dA_ .data());
|
|
|
|
fluid_.viscosity(nc_, & p[0], & z[0], & cells_[0],
|
|
mu_.data(), /*dmu_.data()*/ 0);
|
|
}
|
|
|
|
ADB
|
|
fvf(const int phase, const ADB& p) const
|
|
{
|
|
assert (0 <= phase);
|
|
assert (phase < np_ );
|
|
|
|
typedef typename ADB::V V;
|
|
|
|
const V A = A_ .block(0, phase * (np_ + 1), nc_, 1);
|
|
const V dA = dA_.block(0, phase * (np_ + 1), nc_, 1);
|
|
|
|
std::vector<typename ADB::M> jac(p.numBlocks());
|
|
assert(p.numBlocks() == 2);
|
|
jac[0] = spdiag(dA);
|
|
assert(jac[0].cols() == p.blockPattern()[0]);
|
|
jac[1] = M(A.rows(), p.blockPattern()[1]);
|
|
return one_ / ADB::function(A, jac);
|
|
}
|
|
|
|
typename ADB::V
|
|
phaseRelPerm(const int phase) const
|
|
{
|
|
const typename ADB::V kr = kr_.block(0, phase, nc_, 1);
|
|
|
|
return kr;
|
|
}
|
|
|
|
ADB
|
|
phaseViscosity(const int phase, const ADB& p) const
|
|
{
|
|
assert (0 <= phase);
|
|
assert (phase < np_ );
|
|
|
|
typedef typename ADB::V V;
|
|
|
|
const V mu = mu_ .block(0, phase, nc_, 1);
|
|
const V dmu = dmu_.block(0, phase, nc_, 1);
|
|
|
|
std::vector<typename ADB::M> jac(p.numBlocks());
|
|
assert(p.numBlocks() == 2);
|
|
jac[0] = spdiag(dmu);
|
|
assert(jac[0].cols() == p.blockPattern()[0]);
|
|
jac[1] = M(mu.rows(), p.blockPattern()[1]);
|
|
|
|
return ADB::function(mu, jac);
|
|
}
|
|
|
|
ADB
|
|
phaseDensity(const int phase, const ADB& p) const
|
|
{
|
|
typedef typename ADB::V V;
|
|
|
|
const double* rho0 = fluid_.surfaceDensity();
|
|
|
|
V rho = V::Zero(nc_, 1);
|
|
V drho = V::Zero(nc_, 1);
|
|
for (int i = 0; i < np_; ++i) {
|
|
rho += rho0[i] * A_ .block(0, phase*np_ + i, nc_, 1);
|
|
drho += rho0[i] * dA_.block(0, phase*np_ + i, nc_, 1);
|
|
}
|
|
|
|
assert (p.numBlocks() == 2);
|
|
std::vector<typename ADB::M> jac(p.numBlocks());
|
|
jac[0] = spdiag(drho);
|
|
jac[1] = M(rho.rows(), p.blockPattern()[1]);
|
|
|
|
assert (jac[0].cols() == p.blockPattern()[0]);
|
|
|
|
return ADB::function(rho, jac);
|
|
}
|
|
|
|
private:
|
|
const int nc_;
|
|
const int np_;
|
|
|
|
const std::vector<int> cells_;
|
|
const BOFluid& fluid_;
|
|
|
|
typedef Eigen::Array<Scalar,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DerivedQuant;
|
|
|
|
// Pressure dependent quantities (essentially B and \mu)
|
|
DerivedQuant A_ ;
|
|
DerivedQuant dA_ ;
|
|
DerivedQuant mu_ ;
|
|
DerivedQuant dmu_;
|
|
|
|
// Saturation dependent quantities (rel-perm only)
|
|
DerivedQuant kr_;
|
|
|
|
const typename ADB::V zero_;
|
|
const typename ADB::V one_ ;
|
|
};
|
|
|
|
template <class BOFluid, class GeoProps>
|
|
class ImpesTPFAAD {
|
|
public:
|
|
ImpesTPFAAD(const UnstructuredGrid& grid ,
|
|
const BOFluid& fluid,
|
|
const GeoProps& geo ,
|
|
const Wells& wells,
|
|
const LinearSolverInterface& linsolver)
|
|
: grid_ (grid)
|
|
, geo_ (geo)
|
|
, wells_ (wells)
|
|
, linsolver_(linsolver)
|
|
, pdepfdata_(grid.number_of_cells, fluid)
|
|
, ops_ (grid)
|
|
, grav_ (gravityOperator(grid_, ops_, geo_))
|
|
, cell_residual_ (ADB::null())
|
|
, well_residual_ (ADB::null())
|
|
{
|
|
}
|
|
|
|
void
|
|
solve(const double dt,
|
|
BlackoilState& state,
|
|
WellState& well_state)
|
|
{
|
|
pdepfdata_.computeSatQuant(state);
|
|
|
|
const double atol = 1.0e-9;
|
|
const double rtol = 5.0e-10;
|
|
const int maxit = 15;
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r0 = residualNorm();
|
|
int it = 0;
|
|
bool resTooLarge = r0 > atol;
|
|
while (resTooLarge && (it < maxit)) {
|
|
solveJacobianSystem(state);
|
|
|
|
assemble(dt, state, well_state);
|
|
|
|
const double r = residualNorm();
|
|
|
|
resTooLarge = (r > atol) && (r > rtol*r0);
|
|
|
|
it += 1;
|
|
}
|
|
|
|
if (resTooLarge) {
|
|
THROW("Failed to compute converged pressure solution");
|
|
}
|
|
else {
|
|
computeFluxes();
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Disallow copying and assignment
|
|
ImpesTPFAAD(const ImpesTPFAAD& rhs);
|
|
ImpesTPFAAD& operator=(const ImpesTPFAAD& rhs);
|
|
|
|
typedef PressureDependentFluidData<double, BOFluid> PDepFData;
|
|
typedef typename PDepFData::ADB ADB;
|
|
typedef typename ADB::V V;
|
|
typedef typename ADB::M M;
|
|
|
|
const UnstructuredGrid& grid_;
|
|
const GeoProps& geo_ ;
|
|
const Wells& wells_;
|
|
const LinearSolverInterface& linsolver_;
|
|
PDepFData pdepfdata_;
|
|
HelperOps ops_;
|
|
const M grav_;
|
|
ADB cell_residual_;
|
|
ADB well_residual_;
|
|
|
|
void
|
|
assemble(const double dt,
|
|
const BlackoilState& state,
|
|
const WellState& well_state)
|
|
{
|
|
typedef Eigen::Array<double,
|
|
Eigen::Dynamic,
|
|
Eigen::Dynamic,
|
|
Eigen::RowMajor> DataBlock;
|
|
|
|
const V& pv = geo_.poreVolume();
|
|
const int nc = grid_.number_of_cells;
|
|
const int np = state.numPhases();
|
|
const int nw = wells_.number_of_wells;
|
|
|
|
pdepfdata_.computePressQuant(state);
|
|
|
|
const Eigen::Map<const DataBlock> z0all(&state.surfacevol()[0], nc, np);
|
|
const DataBlock qall = DataBlock::Zero(nc, np);
|
|
const V delta_t = dt * V::Ones(nc, 1);
|
|
const V transi = subset(geo_.transmissibility(),
|
|
ops_.internal_faces);
|
|
const std::vector<int> well_cells(wells_.well_cells,
|
|
wells_.well_cells + wells_.well_connpos[nw]);
|
|
|
|
// Initialize AD variables: p (cell pressures) and bhp (well bhp).
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
const V bhp0 = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
|
|
std::vector<V> vars0 = { p0, bhp0 };
|
|
std::vector<ADB> vars= ADB::variables(vars0);
|
|
const ADB& p = vars[0];
|
|
const ADB& bhp = vars[1];
|
|
std::vector<int> bpat = p.blockPattern();
|
|
|
|
// Compute T_ij * (p_i - p_j) and use for upwinding.
|
|
const ADB nkgradp = transi * (ops_.ngrad * p);
|
|
const UpwindSelector<double> upwind(grid_, ops_, nkgradp.value());
|
|
|
|
// Extract variables for perforation cell pressures
|
|
// and corresponding perforation well pressures.
|
|
const ADB p_perfcell = subset(p, well_cells);
|
|
// Construct matrix to map wells->perforations.
|
|
M well_to_perf(well_cells.size(), nw);
|
|
typedef Eigen::Triplet<double> Tri;
|
|
std::vector<Tri> w2p;
|
|
for (int w = 0; w < nw; ++w) {
|
|
for (int perf = wells_.well_connpos[w]; perf < wells_.well_connpos[w+1]; ++perf) {
|
|
w2p.emplace_back(perf, w, 1.0);
|
|
}
|
|
}
|
|
well_to_perf.setFromTriplets(w2p.begin(), w2p.end());
|
|
// Construct pressure difference vector for wells.
|
|
const V well_perf_dp = V::Zero(well_cells.size()); // No gravity yet!
|
|
// Finally construct well perforation pressures.
|
|
const ADB p_perfwell = well_to_perf*bhp + well_perf_dp;
|
|
|
|
cell_residual_ = ADB::constant(pv, bpat);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
const ADB cell_B = pdepfdata_.fvf(phase, p);
|
|
const ADB cell_rho = pdepfdata_.phaseDensity(phase, p);
|
|
|
|
const V kr = pdepfdata_.phaseRelPerm(phase);
|
|
const ADB mu = pdepfdata_.phaseViscosity(phase, p);
|
|
const ADB mf = upwind.select(kr / mu);
|
|
const ADB flux = mf * (nkgradp + (grav_ * cell_rho));
|
|
|
|
const ADB face_B = upwind.select(cell_B);
|
|
|
|
const V z0 = z0all.block(0, phase, nc, 1);
|
|
const V q = qall .block(0, phase, nc, 1);
|
|
|
|
ADB component_contrib = pv*z0 + delta_t*(q - (ops_.div * (flux / face_B)));
|
|
cell_residual_ = cell_residual_ - (cell_B * component_contrib);
|
|
}
|
|
}
|
|
|
|
void
|
|
solveJacobianSystem(BlackoilState& state) const
|
|
{
|
|
const int nc = grid_.number_of_cells;
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> matr = cell_residual_.derivative()[0];
|
|
|
|
#if HACK_INCOMPRESSIBLE_GRAVITY
|
|
matr.coeffRef(0, 0) *= 2;
|
|
#endif
|
|
|
|
V dp(nc);
|
|
const V p0 = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
|
|
Opm::LinearSolverInterface::LinearSolverReport rep
|
|
= linsolver_.solve(nc, matr.nonZeros(),
|
|
matr.outerIndexPtr(), matr.innerIndexPtr(), matr.valuePtr(),
|
|
cell_residual_.value().data(), dp.data());
|
|
if (!rep.converged) {
|
|
THROW("ImpesTPFAAD::solve(): Linear solver convergence failure.");
|
|
}
|
|
const V p = p0 - dp;
|
|
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
|
|
}
|
|
|
|
double
|
|
residualNorm() const
|
|
{
|
|
return cell_residual_.value().matrix().norm();
|
|
}
|
|
|
|
void
|
|
computeFluxes() const
|
|
{
|
|
}
|
|
};
|
|
} // namespace Opm
|
|
|
|
#endif /* OPM_IMPESTPFAAD_HEADER_INCLUDED */
|