opm-simulators/opm/simulators/aquifers/AquiferFetkovich.hpp
2024-03-06 10:53:00 +01:00

208 lines
6.4 KiB
C++

/*
Copyright 2017 TNO - Heat Transfer & Fluid Dynamics, Modelling & Optimization of the Subsurface
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_AQUIFETP_HEADER_INCLUDED
#define OPM_AQUIFETP_HEADER_INCLUDED
#include <opm/simulators/aquifers/AquiferAnalytical.hpp>
#include <opm/input/eclipse/EclipseState/Aquifer/Aquifetp.hpp>
#include <opm/output/data/Aquifer.hpp>
#include <stdexcept>
#include <vector>
namespace Opm
{
template <typename TypeTag>
class AquiferFetkovich : public AquiferAnalytical<TypeTag>
{
public:
using Base = AquiferAnalytical<TypeTag>;
using typename Base::BlackoilIndices;
using typename Base::ElementContext;
using typename Base::Eval;
using typename Base::FluidState;
using typename Base::FluidSystem;
using typename Base::IntensiveQuantities;
using typename Base::RateVector;
using typename Base::Scalar;
using typename Base::Simulator;
using typename Base::ElementMapper;
AquiferFetkovich(const std::vector<Aquancon::AquancCell>& connections,
const Simulator& simulator,
const Aquifetp::AQUFETP_data& aqufetp_data)
: Base(aqufetp_data.aquiferID, connections, simulator)
, aqufetp_data_(aqufetp_data)
{
}
static AquiferFetkovich serializationTestObject(const Simulator& simulator)
{
AquiferFetkovich result({}, simulator, {});
result.pressure_previous_ = {1.0, 2.0, 3.0};
result.pressure_current_ = {4.0, 5.0};
result.Qai_ = {{6.0}};
result.rhow_ = 7.0;
result.W_flux_ = 8.0;
result.aquifer_pressure_ = 9.0;
return result;
}
void endTimeStep() override
{
for (const auto& q : this->Qai_) {
this->W_flux_ += q * this->simulator_.timeStepSize();
}
aquifer_pressure_ = aquiferPressure();
}
data::AquiferData aquiferData() const override
{
// TODO: how to unify the two functions?
auto data = data::AquiferData{};
data.aquiferID = this->aquiferID();
data.pressure = this->aquifer_pressure_;
data.fluxRate = std::accumulate(this->Qai_.begin(), this->Qai_.end(), 0.0,
[](const double flux, const auto& q) -> double
{
return flux + q.value();
});
data.volume = this->W_flux_.value();
data.initPressure = this->pa0_;
auto* aquFet = data.typeData.template create<data::AquiferType::Fetkovich>();
aquFet->initVolume = this->aqufetp_data_.initial_watvolume;
aquFet->prodIndex = this->aqufetp_data_.prod_index;
aquFet->timeConstant = this->aqufetp_data_.timeConstant();
return data;
}
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(static_cast<Base&>(*this));
serializer(aquifer_pressure_);
}
bool operator==(const AquiferFetkovich& rhs) const
{
return static_cast<const Base&>(*this) == rhs &&
this->aquifer_pressure_ == rhs.aquifer_pressure_;
}
protected:
// Aquifer Fetkovich Specific Variables
Aquifetp::AQUFETP_data aqufetp_data_;
Scalar aquifer_pressure_; // aquifer
void assignRestartData(const data::AquiferData& xaq) override
{
if (! xaq.typeData.is<data::AquiferType::Fetkovich>()) {
throw std::invalid_argument {
"Analytic aquifer data for unexpected aquifer "
"type passed to Fetkovich aquifer"
};
}
this->aquifer_pressure_ = xaq.pressure;
this->rhow_ = this->aqufetp_data_.waterDensity();
}
inline Eval dpai(int idx)
{
const auto gdz =
this->gravity_() * (this->cell_depth_[idx] - this->aquiferDepth());
return this->aquifer_pressure_ + this->rhow_*gdz
- this->pressure_current_.at(idx);
}
// This function implements Eq 5.12 of the EclipseTechnicalDescription
inline Scalar aquiferPressure()
{
Scalar Flux = this->W_flux_.value();
const auto& comm = this->simulator_.vanguard().grid().comm();
comm.sum(&Flux, 1);
const auto denom =
this->aqufetp_data_.total_compr * this->aqufetp_data_.initial_watvolume;
return this->pa0_ - (Flux / denom);
}
inline void calculateAquiferConstants() override
{
this->Tc_ = this->aqufetp_data_.timeConstant();
}
// This function implements Eq 5.14 of the EclipseTechnicalDescription
inline void calculateInflowRate(int idx, const Simulator& simulator) override
{
const Scalar td_Tc_ = simulator.timeStepSize() / this->Tc_;
const Scalar coef = (1 - exp(-td_Tc_)) / td_Tc_;
this->Qai_.at(idx) = coef * this->alphai_[idx] *
this->aqufetp_data_.prod_index * dpai(idx);
}
inline void calculateAquiferCondition() override
{
if (this->solution_set_from_restart_) {
return;
}
if (! this->aqufetp_data_.initial_pressure.has_value()) {
this->aqufetp_data_.initial_pressure =
this->calculateReservoirEquilibrium();
const auto& tables = this->simulator_.vanguard()
.eclState().getTableManager();
this->aqufetp_data_.finishInitialisation(tables);
}
this->rhow_ = this->aqufetp_data_.waterDensity();
this->pa0_ = this->aqufetp_data_.initial_pressure.value();
if (this->aqufetp_data_.initial_temperature.has_value())
this->Ta0_ = this->aqufetp_data_.initial_temperature.value();
this->aquifer_pressure_ = this->pa0_;
}
virtual Scalar aquiferDepth() const override
{
return this->aqufetp_data_.datum_depth;
}
}; // Class AquiferFetkovich
} // namespace Opm
#endif