opm-simulators/ebos/eclgenericoutputblackoilmodule.hh
Bård Skaflestad 9d75915e4b Prepare for Revised Implementation of WBPn
This initial commit changes the API of the CollectDataToIORank
class' handling of WBPn values from collecting a set cell pressures
into communicating pre-computed WBPn values through the new
WellBlockAveragePressures container class.  This is in preparation
of moving the WBPn calculation to the simulator side for greater
parallelism.  For now we do not compute any of the actual WBPn
values.  That will be the subject of follow-up commits.

While here, also split a number of very long lines for readability.
2023-06-09 13:25:43 +02:00

558 lines
17 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::EclOutputBlackOilModule
*/
#ifndef EWOMS_ECL_GENERIC_OUTPUT_BLACK_OIL_MODULE_HH
#define EWOMS_ECL_GENERIC_OUTPUT_BLACK_OIL_MODULE_HH
#include <array>
#include <functional>
#include <map>
#include <numeric>
#include <optional>
#include <stdexcept>
#include <utility>
#include <opm/output/data/Wells.hpp>
#include <opm/output/eclipse/Inplace.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <ebos/eclinterregflows.hh>
namespace Opm {
namespace data { class Solution; }
class EclipseState;
class Schedule;
class SummaryConfig;
class SummaryConfigNode;
class SummaryState;
template<class FluidSystem, class Scalar>
class EclGenericOutputBlackoilModule {
public:
Scalar* getPRESSURE_ptr(void) {
return (this->fluidPressure_.data()) ;
};
int getPRESSURE_size( void ) {
return (this->fluidPressure_.size()) ;
};
// write cumulative production and injection reports to output
void outputCumLog(size_t reportStepNum,
const bool substep,
bool forceDisableCumOutput);
// write production report to output
void outputProdLog(size_t reportStepNum,
const bool substep,
bool forceDisableProdOutput);
// write injection report to output
void outputInjLog(size_t reportStepNum,
const bool substep,
bool forceDisableInjOutput);
// write Fluid In Place to output log
Inplace outputFipLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Parallel::Communication& comm);
// write Reservoir Volumes to output log
Inplace outputFipresvLog(std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData,
const bool substep,
const Parallel::Communication& comm);
void outputErrorLog(const Parallel::Communication& comm) const;
void addRftDataToWells(data::Wells& wellDatas,
size_t reportStepNum);
/*!
* \brief Move all buffers to data::Solution.
*/
void assignToSolution(data::Solution& sol);
void setRestart(const data::Solution& sol,
unsigned elemIdx,
unsigned globalDofIndex);
Scalar getSolventSaturation(unsigned elemIdx) const
{
if (sSol_.size() > elemIdx)
return sSol_[elemIdx];
return 0;
}
Scalar getPolymerConcentration(unsigned elemIdx) const
{
if (cPolymer_.size() > elemIdx)
return cPolymer_[elemIdx];
return 0;
}
Scalar getFoamConcentration(unsigned elemIdx) const
{
if (cFoam_.size() > elemIdx)
return cFoam_[elemIdx];
return 0;
}
Scalar getSaltConcentration(unsigned elemIdx) const
{
if (cSalt_.size() > elemIdx)
return cSalt_[elemIdx];
return 0;
}
Scalar getSaltSaturation(unsigned elemIdx) const
{
if (pSalt_.size() > elemIdx)
return pSalt_[elemIdx];
return 0;
}
Scalar getPermFactor(unsigned elemIdx) const
{
if (permFact_.size() > elemIdx)
return permFact_[elemIdx];
return 0;
}
Scalar getMicrobialConcentration(unsigned elemIdx) const
{
if (cMicrobes_.size() > elemIdx)
return cMicrobes_[elemIdx];
return 0;
}
Scalar getOxygenConcentration(unsigned elemIdx) const
{
if (cOxygen_.size() > elemIdx)
return cOxygen_[elemIdx];
return 0;
}
Scalar getUreaConcentration(unsigned elemIdx) const
{
if (cUrea_.size() > elemIdx)
return cUrea_[elemIdx];
return 0;
}
Scalar getBiofilmConcentration(unsigned elemIdx) const
{
if (cBiofilm_.size() > elemIdx)
return cBiofilm_[elemIdx];
return 0;
}
Scalar getCalciteConcentration(unsigned elemIdx) const
{
if (cCalcite_.size() > elemIdx)
return cCalcite_[elemIdx];
return 0;
}
const std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>& getFlowsn() const
{
return this->flowsn_;
}
bool hasFlowsn() const
{
return enableFlowsn_;
}
bool hasFlows() const
{
return enableFlows_;
}
bool anyFlows() const
{
return anyFlows_;
}
const std::array<std::pair<std::string, std::pair<std::vector<int>, std::vector<double>>>, 3>& getFloresn() const
{
return this->floresn_;
}
bool hasFloresn() const
{
return enableFloresn_;
}
bool hasFlores() const
{
return enableFlores_;
}
bool anyFlores() const
{
return anyFlores_;
}
bool needInterfaceFluxes([[maybe_unused]] const bool isSubStep) const
{
return this->interRegionFlows_.wantInterRegflowSummary();
}
const std::map<std::pair<std::string, int>, double>& getBlockData()
{
return blockData_;
}
const Inplace& initialInplace() const
{
return this->initialInplace_.value();
}
bool localDataValid() const{
return local_data_valid_;
}
void invalidateLocalData(){
local_data_valid_ = false;
}
void validateLocalData(){
local_data_valid_ = true;
}
// Virtual destructor for safer inheritance.
virtual ~EclGenericOutputBlackoilModule();
template<class Serializer>
void serializeOp(Serializer& serializer)
{
serializer(initialInplace_);
}
protected:
using ScalarBuffer = std::vector<Scalar>;
using StringBuffer = std::vector<std::string>;
enum { numPhases = FluidSystem::numPhases };
enum { numComponents = FluidSystem::numComponents };
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
enum { gasCompIdx = FluidSystem::gasCompIdx };
enum { oilCompIdx = FluidSystem::oilCompIdx };
enum { waterCompIdx = FluidSystem::waterCompIdx };
EclGenericOutputBlackoilModule(const EclipseState& eclState,
const Schedule& schedule,
const SummaryConfig& summaryConfig,
const SummaryState& summaryState,
bool enableEnergy,
bool enableTemperature,
bool enableSolvent,
bool enablePolymer,
bool enableFoam,
bool enableBrine,
bool enableSaltPrecipitation,
bool enableExtbo,
bool enableMICP);
struct WellProdDataType
{
enum WPId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilRate = 2, //OR
WaterRate = 3, //WR
GasRate = 4, //GR
FluidResVol = 5, //FRV
WaterCut = 6, //WC
GasOilRatio = 7, //GOR
WatGasRatio = 8, //WGR
BHP = 9, //BHP
THP = 10, //THP
SteadyStatePI = 11, //SteadyStatePI
WellName = 0, //WName
CTRLMode = 1, //CTRL
};
static constexpr int numWPValues = 12;
static constexpr int numWPNames = 2;
};
struct WellInjDataType
{
enum WIId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilRate = 2, //OR
WaterRate = 3, //WR
GasRate = 4, //GR
FluidResVol = 5, //FRV
BHP = 6, //BHP
THP = 7, //THP
SteadyStateII = 8, //SteadyStateII
WellName = 0, //WName
CTRLModeOil = 1, //CTRLo
CTRLModeWat = 2, //CTRLw
CTRLModeGas = 3, //CTRLg
};
static constexpr int numWIValues = 9;
static constexpr int numWINames = 4;
};
struct WellCumDataType
{
enum WCId
{
WellLocationi = 0, //WLi
WellLocationj = 1, //WLj
OilProd = 2, //OP
WaterProd = 3, //WP
GasProd = 4, //GP
FluidResVolProd = 5, //FRVP
OilInj = 6, //OI
WaterInj = 7, //WI
GasInj = 8, //GI
FluidResVolInj = 9, //FRVI
WellName = 0, //WName
WellType = 1, //WType
WellCTRL = 2, //WCTRL
};
static constexpr int numWCValues = 10;
static constexpr int numWCNames = 3;
};
void doAllocBuffers(unsigned bufferSize,
unsigned reportStepNum,
const bool substep,
const bool log,
const bool isRestart,
const bool vapparsActive,
const bool enableHysteresis,
unsigned numTracers,
unsigned numOutputNnc);
void fipUnitConvert_(std::unordered_map<Inplace::Phase, Scalar>& fip) const;
void pressureUnitConvert_(Scalar& pav) const;
void outputRegionFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> oip,
std::unordered_map<Inplace::Phase, Scalar> cip,
const Scalar& pav, const int reg = 0) const;
void outputResvFluidInPlace_(std::unordered_map<Inplace::Phase, Scalar> cipr,
const int reg = 0) const;
void outputProductionReport_(const ScalarBuffer& wellProd,
const StringBuffer& wellProdNames,
const bool forceDisableProdOutput);
void outputInjectionReport_(const ScalarBuffer& wellInj,
const StringBuffer& wellInjNames,
const bool forceDisableInjOutput);
void outputCumulativeReport_(const ScalarBuffer& wellCum,
const StringBuffer& wellCumNames,
const bool forceDisableCumOutput);
void outputFipLogImpl(const Inplace& inplace) const;
void outputFipresvLogImpl(const Inplace& inplace) const;
void makeRegionSum(Inplace& inplace,
const std::string& region_name,
const Parallel::Communication& comm) const;
Inplace accumulateRegionSums(const Parallel::Communication& comm);
void updateSummaryRegionValues(const Inplace& inplace,
std::map<std::string, double>& miscSummaryData,
std::map<std::string, std::vector<double>>& regionData) const;
static bool isOutputCreationDirective_(const std::string& keyword);
static Scalar pressureAverage_(const Scalar& pressurePvHydrocarbon,
const Scalar& pvHydrocarbon,
const Scalar& pressurePv,
const Scalar& pv,
bool hydrocarbon);
static ScalarBuffer pressureAverage_(const ScalarBuffer& pressurePvHydrocarbon,
const ScalarBuffer& pvHydrocarbon,
const ScalarBuffer& pressurePv,
const ScalarBuffer& pv,
bool hydrocarbon);
// Sum Fip values over regions.
static ScalarBuffer regionSum(const ScalarBuffer& property,
const std::vector<int>& regionId,
const std::size_t maxNumberOfRegions,
const Parallel::Communication& comm);
static int regionMax(const std::vector<int>& region,
const Parallel::Communication& comm);
static void update(Inplace& inplace,
const std::string& region_name,
const Inplace::Phase phase,
const std::size_t ntFip,
const ScalarBuffer& values);
static Scalar sum(const ScalarBuffer& v);
void setupBlockData(std::function<bool(int)> isCartIdxOnThisRank);
virtual bool isDefunctParallelWell(std::string wname) const = 0;
const EclipseState& eclState_;
const Schedule& schedule_;
const SummaryConfig& summaryConfig_;
const SummaryState& summaryState_;
EclInterRegFlowMap interRegionFlows_;
bool enableEnergy_;
bool enableTemperature_;
bool enableSolvent_;
bool enablePolymer_;
bool enableFoam_;
bool enableBrine_;
bool enableSaltPrecipitation_;
bool enableExtbo_;
bool enableMICP_;
bool forceDisableFipOutput_;
bool forceDisableFipresvOutput_;
bool outputFipRestart_;
bool computeFip_;
bool anyFlows_;
bool anyFlores_;
bool enableFlows_;
bool enableFlores_;
bool enableFlowsn_;
bool enableFloresn_;
std::unordered_map<Inplace::Phase, ScalarBuffer> fip_;
std::unordered_map<std::string, std::vector<int>> regions_;
std::unordered_map<Inplace::Phase, std::vector<SummaryConfigNode>> regionNodes_;
std::vector<SummaryConfigNode> RPRNodes_;
std::vector<SummaryConfigNode> RPRPNodes_;
std::vector<int> failedCellsPb_;
std::vector<int> failedCellsPd_;
ScalarBuffer gasFormationVolumeFactor_;
ScalarBuffer hydrocarbonPoreVolume_;
ScalarBuffer pressureTimesPoreVolume_;
ScalarBuffer pressureTimesHydrocarbonVolume_;
ScalarBuffer dynamicPoreVolume_;
ScalarBuffer fluidPressure_;
ScalarBuffer temperature_;
ScalarBuffer rs_;
ScalarBuffer rsw_;
ScalarBuffer rv_;
ScalarBuffer rvw_;
ScalarBuffer overburdenPressure_;
ScalarBuffer oilSaturationPressure_;
ScalarBuffer drsdtcon_;
ScalarBuffer sSol_;
ScalarBuffer cPolymer_;
ScalarBuffer cFoam_;
ScalarBuffer cSalt_;
ScalarBuffer pSalt_;
ScalarBuffer permFact_;
ScalarBuffer extboX_;
ScalarBuffer extboY_;
ScalarBuffer extboZ_;
ScalarBuffer mFracOil_;
ScalarBuffer mFracGas_;
ScalarBuffer mFracCo2_;
ScalarBuffer soMax_;
ScalarBuffer pcSwMdcOw_;
ScalarBuffer krnSwMdcOw_;
ScalarBuffer pcSwMdcGo_;
ScalarBuffer krnSwMdcGo_;
ScalarBuffer ppcw_;
ScalarBuffer gasDissolutionFactor_;
ScalarBuffer oilVaporizationFactor_;
ScalarBuffer bubblePointPressure_;
ScalarBuffer dewPointPressure_;
ScalarBuffer rockCompPorvMultiplier_;
ScalarBuffer swMax_;
ScalarBuffer minimumOilPressure_;
ScalarBuffer saturatedOilFormationVolumeFactor_;
ScalarBuffer rockCompTransMultiplier_;
ScalarBuffer cMicrobes_;
ScalarBuffer cOxygen_;
ScalarBuffer cUrea_;
ScalarBuffer cBiofilm_;
ScalarBuffer cCalcite_;
ScalarBuffer pcow_;
ScalarBuffer pcog_;
std::array<ScalarBuffer, numPhases> saturation_;
std::array<ScalarBuffer, numPhases> invB_;
std::array<ScalarBuffer, numPhases> density_;
std::array<ScalarBuffer, numPhases> viscosity_;
std::array<ScalarBuffer, numPhases> relativePermeability_;
std::vector<ScalarBuffer> tracerConcentrations_;
std::array<ScalarBuffer, numPhases> flowsi_;
std::array<ScalarBuffer, numPhases> flowsj_;
std::array<ScalarBuffer, numPhases> flowsk_;
std::array<ScalarBuffer, numPhases> floresi_;
std::array<ScalarBuffer, numPhases> floresj_;
std::array<ScalarBuffer, numPhases> floresk_;
std::array<std::pair<std::string, std::pair<std::vector<int>, ScalarBuffer>>, 3> floresn_;
std::array<std::pair<std::string, std::pair<std::vector<int>, ScalarBuffer>>, 3> flowsn_;
std::map<size_t, Scalar> oilConnectionPressures_;
std::map<size_t, Scalar> waterConnectionSaturations_;
std::map<size_t, Scalar> gasConnectionSaturations_;
std::map<std::pair<std::string, int>, double> blockData_;
std::optional<Inplace> initialInplace_;
bool local_data_valid_;
};
} // namespace Opm
#endif