opm-simulators/opm/autodiff/WellInterface.hpp
Tor Harald Sandve ebc2f46967 Use pore volume weighted averaged hydrocarbon state in rateConverted.
- pressure, rs and rv is averaged using hydrocarbon pore volume weights.
- pvtRegions is used as input in the conversion factor calculations.
- the pvt cell of the first well cell is used as the pvt index.
(Completing a well in two different PVT regions sounds like a very bad
idea anyway)
- FIP region support is added to the rate converter also for the ebos
interface.
2017-10-03 10:25:56 +02:00

317 lines
11 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
#define OPM_WELLINTERFACE_HEADER_INCLUDED
#include <opm/common/OpmLog/OpmLog.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/wells/WellsManager.hpp>
#include <opm/autodiff/VFPProperties.hpp>
#include <opm/autodiff/VFPInjProperties.hpp>
#include <opm/autodiff/VFPProdProperties.hpp>
#include <opm/autodiff/WellHelpers.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoilDense.hpp>
#include <opm/autodiff/BlackoilModelParameters.hpp>
#include <opm/simulators/WellSwitchingLogger.hpp>
#include<dune/common/fmatrix.hh>
#include<dune/istl/bcrsmatrix.hh>
#include<dune/istl/matrixmatrix.hh>
#include <opm/material/densead/Math.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <string>
#include <memory>
#include <vector>
#include <cassert>
namespace Opm
{
template<typename TypeTag>
class WellInterface
{
public:
using WellState = WellStateFullyImplicitBlackoilDense;
typedef BlackoilModelParameters ModelParameters;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) BlackoilIndices;
typedef typename GET_PROP_TYPE(TypeTag, IntensiveQuantities) IntensiveQuantities;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
static const int numEq = BlackoilIndices::numEq;
typedef double Scalar;
typedef Dune::FieldVector<Scalar, numEq > VectorBlockType;
typedef Dune::FieldMatrix<Scalar, numEq, numEq > MatrixBlockType;
typedef Dune::BCRSMatrix <MatrixBlockType> Mat;
typedef Dune::BlockVector<VectorBlockType> BVector;
typedef DenseAd::Evaluation<double, /*size=*/numEq> Eval;
typedef Ewoms::BlackOilPolymerModule<TypeTag> PolymerModule;
static const bool has_solvent = GET_PROP_VALUE(TypeTag, EnableSolvent);
static const bool has_polymer = GET_PROP_VALUE(TypeTag, EnablePolymer);
/// Constructor
WellInterface(const Well* well, const int time_step, const Wells* wells);
/// Virutal destructor
virtual ~WellInterface() {}
/// Well name.
const std::string& name() const;
/// Well cells.
const std::vector<int>& cells() {return well_cells_; }
/// Well type, INJECTOR or PRODUCER.
WellType wellType() const;
/// Well controls
WellControls* wellControls() const;
void setVFPProperties(const VFPProperties* vfp_properties_arg);
virtual void init(const PhaseUsage* phase_usage_arg,
const std::vector<bool>* active_arg,
const std::vector<double>& depth_arg,
const double gravity_arg,
const int num_cells);
virtual void initPrimaryVariablesEvaluation() const = 0;
/// a struct to collect information about the convergence checking
struct ConvergenceReport {
struct ProblemWell {
std::string well_name;
std::string phase_name;
};
bool converged = true;
bool nan_residual_found = false;
std::vector<ProblemWell> nan_residual_wells;
// We consider Inf is large residual here
bool too_large_residual_found = false;
std::vector<ProblemWell> too_large_residual_wells;
ConvergenceReport& operator+=(const ConvergenceReport& rhs) {
converged = converged && rhs.converged;
nan_residual_found = nan_residual_found || rhs.nan_residual_found;
if (rhs.nan_residual_found) {
for (const ProblemWell& well : rhs.nan_residual_wells) {
nan_residual_wells.push_back(well);
}
}
too_large_residual_found = too_large_residual_found || rhs.too_large_residual_found;
if (rhs.too_large_residual_found) {
for (const ProblemWell& well : rhs.too_large_residual_wells) {
too_large_residual_wells.push_back(well);
}
}
return *this;
}
};
virtual ConvergenceReport getWellConvergence(Simulator& ebosSimulator,
const std::vector<double>& B_avg,
const ModelParameters& param) const = 0;
virtual void solveEqAndUpdateWellState(const ModelParameters& param,
WellState& well_state) = 0;
virtual void assembleWellEq(Simulator& ebosSimulator,
const double dt,
WellState& well_state,
bool only_wells) = 0;
void updateListEconLimited(const WellState& well_state,
DynamicListEconLimited& list_econ_limited) const;
void setWellEfficiencyFactor(const double efficiency_factor);
void computeRepRadiusPerfLength(const Grid& grid, const std::map<int, int>& cartesian_to_compressed);
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
virtual void recoverWellSolutionAndUpdateWellState(const BVector& x, const ModelParameters& param,
WellState& well_state) const = 0;
/// Ax = Ax - C D^-1 B x
virtual void apply(const BVector& x, BVector& Ax) const = 0;
/// r = r - C D^-1 Rw
virtual void apply(BVector& r) const = 0;
virtual void computeWellPotentials(const Simulator& ebosSimulator,
const WellState& well_state,
std::vector<double>& well_potentials) const = 0;
virtual void computeAccumWell() = 0;
// TODO: it should come with a different name
// for MS well, the definition is different and should not use this name anymore
virtual void computeWellConnectionPressures(const Simulator& ebosSimulator,
const WellState& xw) = 0;
virtual void updateWellStateWithTarget(const int current,
WellState& xw) const = 0;
virtual void updateWellControl(WellState& xw,
wellhelpers::WellSwitchingLogger& logger) const = 0;
virtual void updatePrimaryVariables(const WellState& well_state) const = 0;
protected:
// to indicate a invalid connection
static const int INVALIDCONNECTION = -100000;
const Well* well_ecl_;
const int current_step_;
// the index of well in Wells struct
int index_of_well_;
// well type
// INJECTOR or PRODUCER
enum WellType well_type_;
// number of phases
int number_of_phases_;
// component fractions for each well
// typically, it should apply to injection wells
std::vector<double> comp_frac_;
// controls for this well
// TODO: later will check whehter to let it stay with pointer
struct WellControls* well_controls_;
// number of the perforations for this well
int number_of_perforations_;
// record the index of the first perforation
// TODO: it might not be needed if we refactor WellState to be a vector
// of states of individual well.
int first_perf_;
// well index for each perforation
std::vector<double> well_index_;
// TODO: it might should go to StandardWell
// depth for each perforation
std::vector<double> perf_depth_;
// reference depth for the BHP
double ref_depth_;
double well_efficiency_factor_;
// cell index for each well perforation
std::vector<int> well_cells_;
// saturation table nubmer for each well perforation
std::vector<int> saturation_table_number_;
// representative radius of the perforations, used in shear calculation
std::vector<double> perf_rep_radius_;
// length of the perforations, use in shear calculation
std::vector<double> perf_length_;
// well bore diameter
std::vector<double> bore_diameters_;
const PhaseUsage* phase_usage_;
bool getAllowCrossFlow() const;
const std::vector<bool>* active_;
const VFPProperties* vfp_properties_;
double gravity_;
const std::vector<bool>& active() const;
const PhaseUsage& phaseUsage() const;
int flowPhaseToEbosCompIdx( const int phaseIdx ) const;
int flowToEbosPvIdx( const int flowPv ) const;
int flowPhaseToEbosPhaseIdx( const int phaseIdx ) const;
// TODO: it is dumplicated with StandardWellsDense
int numComponents() const;
double wsolvent() const;
double wpolymer() const;
bool checkRateEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
bool wellHasTHPConstraints() const;
// Component fractions for each phase for the well
const std::vector<double>& compFrac() const;
double mostStrictBhpFromBhpLimits() const;
// a tuple type for ratio limit check.
// first value indicates whether ratio limit is violated, when the ratio limit is not violated, the following three
// values should not be used.
// second value indicates whehter there is only one connection left.
// third value indicates the indx of the worst-offending connection.
// the last value indicates the extent of the violation for the worst-offending connection, which is defined by
// the ratio of the actual value to the value of the violated limit.
using RatioCheckTuple = std::tuple<bool, bool, int, double>;
RatioCheckTuple checkMaxWaterCutLimit(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
RatioCheckTuple checkRatioEconLimits(const WellEconProductionLimits& econ_production_limits,
const WellState& well_state) const;
};
}
#include "WellInterface_impl.hpp"
#endif // OPM_WELLINTERFACE_HEADER_INCLUDED