opm-simulators/examples/problems/waterairproblem.hh
Andreas Lauser ec4b6c82dd fix most pedantic compiler warnings in the basic infrastructure
i.e., using clang 3.8 to compile the test suite with the following
flags:

```
-Weverything
-Wno-documentation
-Wno-documentation-unknown-command
-Wno-c++98-compat
-Wno-c++98-compat-pedantic
-Wno-undef
-Wno-padded
-Wno-global-constructors
-Wno-exit-time-destructors
-Wno-weak-vtables
-Wno-float-equal
```

should not produce any warnings anymore. In my opinion the only flag
which would produce beneficial warnings is -Wdocumentation. This has
not been fixed in this patch because writing documentation is left for
another day (or, more likely, year).

note that this patch consists of a heavy dose of the OPM_UNUSED macro
and plenty of static_casts (to fix signedness issues). Fixing the
singedness issues were quite a nightmare and the fact that the Dune
API is quite inconsistent in that regard was not exactly helpful. :/

Finally this patch includes quite a few formatting changes (e.g., all
occurences of 'T &t' should be changed to `T& t`) and some fixes for
minor issues which I've found during the excercise.

I've made sure that all unit tests the test suite still pass
successfully and I've made sure that flow_ebos still works for Norne
and that it did not regress w.r.t. performance.

(Note that this patch does not fix compiler warnings triggered `ebos`
and `flow_ebos` but only those caused by the basic infrastructure or
the unit tests.)

v2: fix the warnings that occur if the dune-localfunctions module is
    not available. thanks to [at]atgeirr for testing.
v3: fix dune 2.3 build issue
2016-11-09 14:54:22 +01:00

571 lines
19 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Ewoms::WaterAirProblem
*/
#ifndef EWOMS_WATER_AIR_PROBLEM_HH
#define EWOMS_WATER_AIR_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidsystems/H2OAirFluidSystem.hpp>
#include <opm/material/fluidstates/ImmiscibleFluidState.hpp>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidmatrixinteractions/LinearMaterial.hpp>
#include <opm/material/fluidmatrixinteractions/RegularizedBrooksCorey.hpp>
#include <opm/material/fluidmatrixinteractions/EffToAbsLaw.hpp>
#include <opm/material/fluidmatrixinteractions/MaterialTraits.hpp>
#include <opm/material/heatconduction/Somerton.hpp>
#include <opm/material/constraintsolvers/ComputeFromReferencePhase.hpp>
#include <opm/material/common/Unused.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <dune/common/version.hh>
#include <sstream>
#include <string>
namespace Ewoms {
template <class TypeTag>
class WaterAirProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(WaterAirBaseProblem);
// Set the grid type
SET_TYPE_PROP(WaterAirBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(WaterAirBaseProblem, Problem, Ewoms::WaterAirProblem<TypeTag>);
// Set the material Law
SET_PROP(WaterAirBaseProblem, MaterialLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::TwoPhaseMaterialTraits<Scalar,
/*wettingPhaseIdx=*/FluidSystem::liquidPhaseIdx,
/*nonWettingPhaseIdx=*/FluidSystem::gasPhaseIdx> Traits;
// define the material law which is parameterized by effective
// saturations
typedef Opm::RegularizedBrooksCorey<Traits> EffMaterialLaw;
public:
// define the material law parameterized by absolute saturations
// which uses the two-phase API
typedef Opm::EffToAbsLaw<EffMaterialLaw> type;
};
// Set the heat conduction law
SET_PROP(WaterAirBaseProblem, HeatConductionLaw)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
public:
// define the material law parameterized by absolute saturations
typedef Opm::Somerton<FluidSystem, Scalar> type;
};
// Set the fluid system. in this case, we use the one which describes
// air and water
SET_TYPE_PROP(WaterAirBaseProblem, FluidSystem,
Opm::FluidSystems::H2OAir<typename GET_PROP_TYPE(TypeTag, Scalar)>);
// Enable gravity
SET_BOOL_PROP(WaterAirBaseProblem, EnableGravity, true);
// Use forward differences instead of central differences
SET_INT_PROP(WaterAirBaseProblem, NumericDifferenceMethod, +1);
// Write newton convergence
SET_BOOL_PROP(WaterAirBaseProblem, NewtonWriteConvergence, false);
// The default for the end time of the simulation (1 year)
SET_SCALAR_PROP(WaterAirBaseProblem, EndTime, 1.0 * 365 * 24 * 60 * 60);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(WaterAirBaseProblem, InitialTimeStepSize, 250);
// The default DGF file to load
SET_STRING_PROP(WaterAirBaseProblem, GridFile, "./data/waterair.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
* \brief Non-isothermal gas injection problem where a air
* is injected into a fully water saturated medium.
*
* During buoyancy driven upward migration, the gas passes a
* rectangular high temperature area. This decreases the temperature
* of the high-temperature area and accelerates gas infiltration due
* to the lower viscosity of the gas. (Be aware that the pressure of
* the gas is approximately constant within the lens, so the density
* of the gas is reduced. This more than off-sets the viscosity
* increase of the gas at constant density.)
*
* The domain is sized 40 m times 40 m. The rectangular area with
* increased temperature (380 K) starts at (20 m, 5 m) and ends at (30
* m, 35 m).
*
* For the mass conservation equation, no-flow boundary conditions are
* used on the top and on the bottom of the domain, while free-flow
* conditions apply on the left and the right boundary. Gas is
* injected at bottom from 15 m to 25 m at a rate of 0.001 kg/(s m^2)
* by means if a forced inflow boundary condition.
*
* At the free-flow boundaries, the initial condition for the bulk
* part of the domain is assumed, i. e. hydrostatic pressure, a gas
* saturation of zero and a geothermal temperature gradient of 0.03
* K/m.
*/
template <class TypeTag >
class WaterAirProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
// copy some indices for convenience
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, Indices) Indices;
enum {
numPhases = FluidSystem::numPhases,
// energy related indices
temperatureIdx = Indices::temperatureIdx,
energyEqIdx = Indices::energyEqIdx,
// component indices
H2OIdx = FluidSystem::H2OIdx,
AirIdx = FluidSystem::AirIdx,
// phase indices
liquidPhaseIdx = FluidSystem::liquidPhaseIdx,
gasPhaseIdx = FluidSystem::gasPhaseIdx,
// equation indices
conti0EqIdx = Indices::conti0EqIdx,
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
static const bool enableEnergy = GET_PROP_VALUE(TypeTag, EnableEnergy);
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, Constraints) Constraints;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, Model) Model;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLaw) MaterialLaw;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLaw) HeatConductionLaw;
typedef typename GET_PROP_TYPE(TypeTag, HeatConductionLawParams) HeatConductionLawParams;
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
WaterAirProblem(Simulator& simulator)
: ParentType(simulator)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
maxDepth_ = 1000.0; // [m]
eps_ = 1e-6;
FluidSystem::init(/*Tmin=*/275, /*Tmax=*/600, /*nT=*/100,
/*pmin=*/9.5e6, /*pmax=*/10.5e6, /*np=*/200);
layerBottom_ = 22.0;
// intrinsic permeabilities
fineK_ = this->toDimMatrix_(1e-13);
coarseK_ = this->toDimMatrix_(1e-12);
// porosities
finePorosity_ = 0.3;
coarsePorosity_ = 0.3;
// residual saturations
fineMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
fineMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
coarseMaterialParams_.setResidualSaturation(liquidPhaseIdx, 0.2);
coarseMaterialParams_.setResidualSaturation(gasPhaseIdx, 0.0);
// parameters for the Brooks-Corey law
fineMaterialParams_.setEntryPressure(1e4);
coarseMaterialParams_.setEntryPressure(1e4);
fineMaterialParams_.setLambda(2.0);
coarseMaterialParams_.setLambda(2.0);
fineMaterialParams_.finalize();
coarseMaterialParams_.finalize();
// parameters for the somerton law of heat conduction
computeHeatCondParams_(fineHeatCondParams_, finePorosity_);
computeHeatCondParams_(coarseHeatCondParams_, coarsePorosity_);
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{
std::ostringstream oss;
oss << "waterair_" << Model::name();
if (GET_PROP_VALUE(TypeTag, EnableEnergy))
oss << "_ni";
return oss.str();
}
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
// checkConservativeness() does not include the effect of constraints, so we
// disable it for this problem...
//this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* In this problem, the upper part of the domain is sightly less
* permeable than the lower one.
*/
template <class Context>
const DimMatrix& intrinsicPermeability(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineK_;
return coarseK_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*/
template <class Context>
Scalar porosity(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return finePorosity_;
else
return coarsePorosity_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::materialLawParams
*/
template <class Context>
const MaterialLawParams& materialLawParams(const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineMaterialParams_;
else
return coarseMaterialParams_;
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatCapacitySolid
*
* In this case, we assume the rock-matrix to be granite.
*/
template <class Context>
Scalar heatCapacitySolid(const Context& OPM_UNUSED context,
unsigned OPM_UNUSED spaceIdx,
unsigned OPM_UNUSED timeIdx) const
{
return
790 // specific heat capacity of granite [J / (kg K)]
* 2700; // density of granite [kg/m^3]
}
/*!
* \copydoc FvBaseMultiPhaseProblem::heatConductionParams
*/
template <class Context>
const HeatConductionLawParams&
heatConductionParams(const Context& context, unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
if (isFineMaterial_(pos))
return fineHeatCondParams_;
return coarseHeatCondParams_;
}
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*
* For this problem, we inject air at the inlet on the center of
* the lower domain boundary and use a no-flow condition on the
* top boundary and a and a free-flow condition on the left and
* right boundaries of the domain.
*/
template <class Context>
void boundary(BoundaryRateVector& values,
const Context& context,
unsigned spaceIdx, unsigned timeIdx) const
{
const auto& pos = context.cvCenter(spaceIdx, timeIdx);
assert(onLeftBoundary_(pos) ||
onLowerBoundary_(pos) ||
onRightBoundary_(pos) ||
onUpperBoundary_(pos));
if (onInlet_(pos)) {
RateVector massRate(0.0);
massRate[conti0EqIdx + AirIdx] = -1e-3; // [kg/(m^2 s)]
// impose an forced inflow boundary condition on the inlet
values.setMassRate(massRate);
if (enableEnergy) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
Scalar hl = fs.enthalpy(liquidPhaseIdx);
Scalar hg = fs.enthalpy(gasPhaseIdx);
values.setEnthalpyRate(values[conti0EqIdx + AirIdx] * hg +
values[conti0EqIdx + H2OIdx] * hl);
}
}
else if (onLeftBoundary_(pos) || onRightBoundary_(pos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*
* For this problem, we set the medium to be fully saturated by
* liquid water and assume hydrostatic pressure.
*/
template <class Context>
void initial(PrimaryVariables& values,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
values.assignMassConservative(fs, matParams, /*inEquilibrium=*/true);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector& rate,
const Context& OPM_UNUSED context,
unsigned OPM_UNUSED spaceIdx,
unsigned OPM_UNUSED timeIdx) const
{ rate = 0; }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition& pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition& pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
bool onLowerBoundary_(const GlobalPosition& pos) const
{ return pos[1] < eps_; }
bool onUpperBoundary_(const GlobalPosition& pos) const
{ return pos[1] > this->boundingBoxMax()[1] - eps_; }
bool onInlet_(const GlobalPosition& pos) const
{ return onLowerBoundary_(pos) && (15.0 < pos[0]) && (pos[0] < 25.0); }
bool inHighTemperatureRegion_(const GlobalPosition& pos) const
{ return (20 < pos[0]) && (pos[0] < 30) && (pos[1] < 30); }
template <class Context, class FluidState>
void initialFluidState_(FluidState& fs,
const Context& context,
unsigned spaceIdx,
unsigned timeIdx) const
{
const GlobalPosition& pos = context.pos(spaceIdx, timeIdx);
Scalar densityW = 1000.0;
fs.setPressure(liquidPhaseIdx, 1e5 + (maxDepth_ - pos[1])*densityW*9.81);
fs.setSaturation(liquidPhaseIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, H2OIdx, 1.0);
fs.setMoleFraction(liquidPhaseIdx, AirIdx, 0.0);
if (inHighTemperatureRegion_(pos))
fs.setTemperature(380);
else
fs.setTemperature(283.0 + (maxDepth_ - pos[1])*0.03);
// set the gas saturation and pressure
fs.setSaturation(gasPhaseIdx, 0);
Scalar pc[numPhases];
const auto& matParams = materialLawParams(context, spaceIdx, timeIdx);
MaterialLaw::capillaryPressures(pc, matParams, fs);
fs.setPressure(gasPhaseIdx, fs.pressure(liquidPhaseIdx) + (pc[gasPhaseIdx] - pc[liquidPhaseIdx]));
typename FluidSystem::template ParameterCache<Scalar> paramCache;
typedef Opm::ComputeFromReferencePhase<Scalar, FluidSystem> CFRP;
CFRP::solve(fs, paramCache, liquidPhaseIdx, /*setViscosity=*/false, /*setEnthalpy=*/true);
}
void computeHeatCondParams_(HeatConductionLawParams& params, Scalar poro)
{
Scalar lambdaGranite = 2.8; // [W / (K m)]
// create a Fluid state which has all phases present
Opm::ImmiscibleFluidState<Scalar, FluidSystem> fs;
fs.setTemperature(293.15);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
fs.setPressure(phaseIdx, 1.0135e5);
}
typename FluidSystem::template ParameterCache<Scalar> paramCache;
paramCache.updateAll(fs);
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar rho = FluidSystem::density(fs, paramCache, phaseIdx);
fs.setDensity(phaseIdx, rho);
}
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
Scalar lambdaSaturated;
if (FluidSystem::isLiquid(phaseIdx)) {
Scalar lambdaFluid =
FluidSystem::thermalConductivity(fs, paramCache, phaseIdx);
lambdaSaturated = std::pow(lambdaGranite, (1-poro)) + std::pow(lambdaFluid, poro);
}
else
lambdaSaturated = std::pow(lambdaGranite, (1-poro));
params.setFullySaturatedLambda(phaseIdx, lambdaSaturated);
if (!FluidSystem::isLiquid(phaseIdx))
params.setVacuumLambda(lambdaSaturated);
}
}
bool isFineMaterial_(const GlobalPosition& pos) const
{ return pos[dim-1] > layerBottom_; }
DimMatrix fineK_;
DimMatrix coarseK_;
Scalar layerBottom_;
Scalar finePorosity_;
Scalar coarsePorosity_;
MaterialLawParams fineMaterialParams_;
MaterialLawParams coarseMaterialParams_;
HeatConductionLawParams fineHeatCondParams_;
HeatConductionLawParams coarseHeatCondParams_;
Scalar maxDepth_;
Scalar eps_;
};
} // namespace Ewoms
#endif