mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-20 01:32:57 -06:00
1055 lines
46 KiB
C++
1055 lines
46 KiB
C++
/*
|
|
Copyright 2014 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2017 IRIS AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|
|
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|
|
|
|
#include <opm/simulators/wells/WellState.hpp>
|
|
#include <opm/core/props/BlackoilPhases.hpp>
|
|
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
|
|
#include <opm/parser/eclipse/EclipseState/Schedule/Well/Well.hpp>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <vector>
|
|
#include <cassert>
|
|
#include <string>
|
|
#include <utility>
|
|
#include <map>
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <iostream>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
/// The state of a set of wells, tailored for use by the fully
|
|
/// implicit blackoil simulator.
|
|
class WellStateFullyImplicitBlackoil
|
|
: public WellState
|
|
{
|
|
typedef WellState BaseType;
|
|
public:
|
|
typedef BaseType :: WellMapType WellMapType;
|
|
|
|
virtual ~WellStateFullyImplicitBlackoil() = default;
|
|
|
|
// TODO: same definition with WellInterface, eventually they should go to a common header file.
|
|
static const int Water = BlackoilPhases::Aqua;
|
|
static const int Oil = BlackoilPhases::Liquid;
|
|
static const int Gas = BlackoilPhases::Vapour;
|
|
|
|
using BaseType :: wellRates;
|
|
using BaseType :: bhp;
|
|
using BaseType :: perfPress;
|
|
using BaseType :: wellMap;
|
|
using BaseType :: numWells;
|
|
using BaseType :: numPhases;
|
|
|
|
/// Allocate and initialize if wells is non-null. Also tries
|
|
/// to give useful initial values to the bhp(), wellRates()
|
|
/// and perfPhaseRates() fields, depending on controls
|
|
void init(const std::vector<double>& cellPressures,
|
|
const Schedule& schedule,
|
|
const std::vector<Well>& wells_ecl,
|
|
const int report_step,
|
|
const WellStateFullyImplicitBlackoil* prevState,
|
|
const PhaseUsage& pu,
|
|
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
|
const SummaryState& summary_state,
|
|
const int globalNumberOfWells)
|
|
{
|
|
// call init on base class
|
|
BaseType :: init(cellPressures, wells_ecl, pu, well_perf_data, summary_state);
|
|
|
|
globalIsInjectionGrup_.assign(globalNumberOfWells,0);
|
|
globalIsProductionGrup_.assign(globalNumberOfWells,0);
|
|
wellNameToGlobalIdx_.clear();
|
|
|
|
const int nw = wells_ecl.size();
|
|
|
|
if( nw == 0 ) return ;
|
|
|
|
// Initialize perfphaserates_, which must be done here.
|
|
const int np = pu.num_phases;
|
|
|
|
int nperf = 0;
|
|
for (const auto& wpd : well_perf_data) {
|
|
nperf += wpd.size();
|
|
}
|
|
|
|
well_reservoir_rates_.resize(nw * np, 0.0);
|
|
well_dissolved_gas_rates_.resize(nw, 0.0);
|
|
well_vaporized_oil_rates_.resize(nw, 0.0);
|
|
|
|
// checking whether some effective well control happens
|
|
effective_events_occurred_.resize(nw, true);
|
|
|
|
// a hack to make the resize() function used in RESTART related work
|
|
if (!wells_ecl.empty() ) {
|
|
// At the moment, the following events are considered to be effective events
|
|
// more events might join as effective events
|
|
// PRODUCTION_UPDATE, INJECTION_UPDATE, WELL_STATUS_CHANGE
|
|
// 16 + 32 + 128
|
|
const uint64_t effective_events_mask = ScheduleEvents::WELL_STATUS_CHANGE
|
|
+ ScheduleEvents::PRODUCTION_UPDATE
|
|
+ ScheduleEvents::INJECTION_UPDATE;
|
|
for (int w = 0; w < nw; ++w) {
|
|
effective_events_occurred_[w]
|
|
= schedule.hasWellGroupEvent(wells_ecl[w].name(), effective_events_mask, report_step);
|
|
}
|
|
} // end of if (!well_ecl.empty() )
|
|
|
|
// Ensure that we start out with zero rates by default.
|
|
perfphaserates_.clear();
|
|
perfphaserates_.resize(nperf * np, 0.0);
|
|
|
|
// these are only used to monitor the injectivity
|
|
perf_water_throughput_.clear();
|
|
perf_water_throughput_.resize(nperf, 0.0);
|
|
perf_water_velocity_.clear();
|
|
perf_water_velocity_.resize(nperf, 0.0);
|
|
perf_skin_pressure_.clear();
|
|
perf_skin_pressure_.resize(nperf, 0.0);
|
|
|
|
int connpos = 0;
|
|
for (int w = 0; w < nw; ++w) {
|
|
// Initialize perfphaserates_ to well
|
|
// rates divided by the number of perforations.
|
|
const int num_perf_this_well = well_perf_data[w].size();
|
|
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf) {
|
|
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
|
|
}
|
|
}
|
|
perfPress()[perf] = cellPressures[well_perf_data[w][perf-connpos].cell_index];
|
|
}
|
|
connpos += num_perf_this_well;
|
|
}
|
|
|
|
current_injection_controls_.resize(nw);
|
|
current_production_controls_.resize(nw);
|
|
|
|
perfRateSolvent_.clear();
|
|
perfRateSolvent_.resize(nperf, 0.0);
|
|
productivity_index_.resize(nw * np, 0.0);
|
|
well_potentials_.resize(nw * np, 0.0);
|
|
|
|
// intialize wells that have been there before
|
|
// order may change so the mapping is based on the well name
|
|
if (prevState && !prevState->wellMap().empty()) {
|
|
connpos = 0;
|
|
auto end = prevState->wellMap().end();
|
|
for (int w = 0; w < nw; ++w) {
|
|
const Well& well = wells_ecl[w];
|
|
const int num_perf_this_well = well_perf_data[w].size();
|
|
auto it = prevState->wellMap().find(well.name());
|
|
if ( it != end )
|
|
{
|
|
const int oldIndex = (*it).second[ 0 ];
|
|
const int newIndex = w;
|
|
|
|
// bhp
|
|
bhp()[ newIndex ] = prevState->bhp()[ oldIndex ];
|
|
|
|
// thp
|
|
thp()[ newIndex ] = prevState->thp()[ oldIndex ];
|
|
|
|
// Currently this is taken care of by updateWellStateFromTarge. Maybe we should just remove the initialization and just use updateWellStateFromTarget
|
|
//if (effective_events_occurred_[w]) {
|
|
// continue;
|
|
//}
|
|
|
|
// if there is no effective control event happens to the well, we use the current_injection/production_controls_ from prevState
|
|
// otherwise, we use the control specified in the deck
|
|
if (!effective_events_occurred_[w]) {
|
|
current_injection_controls_[ newIndex ] = prevState->currentInjectionControls()[ oldIndex ];
|
|
current_production_controls_[ newIndex ] = prevState->currentProductionControls()[ oldIndex ];
|
|
}
|
|
|
|
// wellrates
|
|
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
|
{
|
|
wellRates()[ idx ] = prevState->wellRates()[ oldidx ];
|
|
}
|
|
|
|
// wellResrates
|
|
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
|
|
{
|
|
wellReservoirRates()[ idx ] = prevState->wellReservoirRates()[ oldidx ];
|
|
}
|
|
|
|
// perfPhaseRates
|
|
const int oldPerf_idx_beg = (*it).second[ 1 ];
|
|
const int num_perf_old_well = (*it).second[ 2 ];
|
|
// copy perforation rates when the number of perforations is equal,
|
|
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int old_perf_phase_idx = oldPerf_idx_beg *np;
|
|
for (int perf_phase_idx = connpos*np;
|
|
perf_phase_idx < (connpos + num_perf_this_well)*np; ++perf_phase_idx, ++old_perf_phase_idx )
|
|
{
|
|
perfPhaseRates()[ perf_phase_idx ] = prevState->perfPhaseRates()[ old_perf_phase_idx ];
|
|
}
|
|
} else {
|
|
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf) {
|
|
for (int p = 0; p < np; ++p) {
|
|
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
|
|
}
|
|
}
|
|
}
|
|
// perfPressures
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfPress()[ perf ] = prevState->perfPress()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
// perfSolventRates
|
|
if (pu.has_solvent) {
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
|
{
|
|
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
}
|
|
|
|
// polymer injectivity related
|
|
// here we did not consider the case that we close some perforation during the running
|
|
// and also, wells can be shut and re-opened
|
|
if (pu.has_polymermw) {
|
|
if( num_perf_old_well == num_perf_this_well )
|
|
{
|
|
int oldPerf_idx = oldPerf_idx_beg;
|
|
for (int perf = connpos; perf < connpos + num_perf_this_well; ++perf, ++oldPerf_idx )
|
|
{
|
|
perf_water_throughput_[ perf ] = prevState->perfThroughput()[ oldPerf_idx ];
|
|
perf_skin_pressure_[ perf ] = prevState->perfSkinPressure()[ oldPerf_idx ];
|
|
perf_water_velocity_[ perf ] = prevState->perfWaterVelocity()[ oldPerf_idx ];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If in the new step, there is no THP related target/limit anymore, its thp value should be
|
|
// set to zero.
|
|
const bool has_thp = well.isInjector() ? well.injectionControls(summary_state).hasControl(Well::InjectorCMode::THP)
|
|
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
|
|
if (!has_thp) {
|
|
thp()[w] = 0.0;
|
|
}
|
|
|
|
// Increment connection position offset.
|
|
connpos += num_perf_this_well;
|
|
}
|
|
}
|
|
|
|
{
|
|
// we need to create a trival segment related values to avoid there will be some
|
|
// multi-segment wells added later.
|
|
nseg_ = nw;
|
|
top_segment_index_.resize(nw);
|
|
seg_number_.resize(nw);
|
|
for (int w = 0; w < nw; ++w) {
|
|
top_segment_index_[w] = w;
|
|
seg_number_[w] = 1; // Top segment is segment #1
|
|
}
|
|
segpress_ = bhp();
|
|
segrates_ = wellRates();
|
|
}
|
|
}
|
|
|
|
|
|
void resize(const std::vector<Well>& wells_ecl,
|
|
const Schedule& schedule,
|
|
const bool handle_ms_well,
|
|
const size_t numCells,
|
|
const PhaseUsage& pu,
|
|
const std::vector<std::vector<PerforationData>>& well_perf_data,
|
|
const SummaryState& summary_state,
|
|
const int globalNumWells)
|
|
{
|
|
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
|
|
init(tmp, schedule, wells_ecl, 0, nullptr, pu, well_perf_data, summary_state, globalNumWells);
|
|
|
|
if (handle_ms_well) {
|
|
initWellStateMSWell(wells_ecl, pu, nullptr);
|
|
}
|
|
}
|
|
|
|
/// One rate per phase and well connection.
|
|
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
|
|
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
|
|
|
|
/// One current control per injecting well.
|
|
std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() { return current_injection_controls_; }
|
|
const std::vector<Opm::Well::InjectorCMode>& currentInjectionControls() const { return current_injection_controls_; }
|
|
|
|
|
|
/// One current control per producing well.
|
|
std::vector<Well::ProducerCMode>& currentProductionControls() { return current_production_controls_; }
|
|
const std::vector<Well::ProducerCMode>& currentProductionControls() const { return current_production_controls_; }
|
|
|
|
bool hasProductionGroupControl(const std::string& groupName) const {
|
|
return current_production_group_controls_.count(groupName) > 0;
|
|
}
|
|
|
|
bool hasInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName) const {
|
|
return current_injection_group_controls_.count(std::make_pair(phase, groupName)) > 0;
|
|
}
|
|
|
|
/// One current control per group.
|
|
void setCurrentProductionGroupControl(const std::string& groupName, const Group::ProductionCMode& groupControl ) {
|
|
current_production_group_controls_[groupName] = groupControl;
|
|
}
|
|
|
|
const Group::ProductionCMode& currentProductionGroupControl(const std::string& groupName) const {
|
|
auto it = current_production_group_controls_.find(groupName);
|
|
|
|
if (it == current_production_group_controls_.end())
|
|
OPM_THROW(std::logic_error, "Could not find any control for production group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
/// One current control per group.
|
|
void setCurrentInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName, const Group::InjectionCMode& groupControl ) {
|
|
current_injection_group_controls_[std::make_pair(phase, groupName)] = groupControl;
|
|
}
|
|
|
|
const Group::InjectionCMode& currentInjectionGroupControl(const Opm::Phase& phase, const std::string& groupName) const {
|
|
auto it = current_injection_group_controls_.find(std::make_pair(phase, groupName));
|
|
|
|
if (it == current_injection_group_controls_.end())
|
|
OPM_THROW(std::logic_error, "Could not find any control for " << phase << " injection group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
|
|
void setCurrentProductionGroupReductionRates(const std::string& groupName, const std::vector<double>& target ) {
|
|
production_group_reduction_rates[groupName] = target;
|
|
}
|
|
|
|
const std::vector<double>& currentProductionGroupReductionRates(const std::string& groupName) const {
|
|
auto it = production_group_reduction_rates.find(groupName);
|
|
|
|
if (it == production_group_reduction_rates.end())
|
|
OPM_THROW(std::logic_error, "Could not find any reduction rates for production group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
void setCurrentInjectionGroupReductionRates(const std::string& groupName, const std::vector<double>& target ) {
|
|
injection_group_reduction_rates[groupName] = target;
|
|
}
|
|
|
|
const std::vector<double>& currentInjectionGroupReductionRates(const std::string& groupName) const {
|
|
auto it = injection_group_reduction_rates.find(groupName);
|
|
|
|
if (it == injection_group_reduction_rates.end())
|
|
OPM_THROW(std::logic_error, "Could not find any reduction rates for injection group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
void setCurrentInjectionGroupReservoirRates(const std::string& groupName, const std::vector<double>& target ) {
|
|
injection_group_reservoir_rates[groupName] = target;
|
|
}
|
|
|
|
const std::vector<double>& currentInjectionGroupReservoirRates(const std::string& groupName) const {
|
|
auto it = injection_group_reservoir_rates.find(groupName);
|
|
|
|
if (it == injection_group_reservoir_rates.end())
|
|
OPM_THROW(std::logic_error, "Could not find any reservoir rates for injection group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
void setCurrentInjectionVREPRates(const std::string& groupName, const double& target ) {
|
|
injection_group_vrep_rates[groupName] = target;
|
|
}
|
|
|
|
const double& currentInjectionVREPRates(const std::string& groupName) const {
|
|
auto it = injection_group_vrep_rates.find(groupName);
|
|
|
|
if (it == injection_group_vrep_rates.end())
|
|
OPM_THROW(std::logic_error, "Could not find any VREP rates for group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
void setCurrentInjectionREINRates(const std::string& groupName, const std::vector<double>& target ) {
|
|
injection_group_rein_rates[groupName] = target;
|
|
}
|
|
|
|
const std::vector<double>& currentInjectionREINRates(const std::string& groupName) const {
|
|
auto it = injection_group_rein_rates.find(groupName);
|
|
|
|
if (it == injection_group_rein_rates.end())
|
|
OPM_THROW(std::logic_error, "Could not find any REIN rates for group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
void setCurrentGroupInjectionPotentials(const std::string& groupName, const std::vector<double>& pot ) {
|
|
injection_group_potentials[groupName] = pot;
|
|
}
|
|
|
|
const std::vector<double>& currentGroupInjectionPotentials(const std::string& groupName) const {
|
|
auto it = injection_group_potentials.find(groupName);
|
|
|
|
if (it == injection_group_potentials.end())
|
|
OPM_THROW(std::logic_error, "Could not find any potentials for group " << groupName);
|
|
|
|
return it->second;
|
|
}
|
|
|
|
|
|
|
|
data::Wells report(const PhaseUsage &pu, const int* globalCellIdxMap) const override
|
|
{
|
|
data::Wells res = WellState::report(pu, globalCellIdxMap);
|
|
|
|
const int nw = this->numWells();
|
|
if( nw == 0 ) return res;
|
|
const int np = pu.num_phases;
|
|
|
|
|
|
using rt = data::Rates::opt;
|
|
std::vector< rt > phs( np );
|
|
if( pu.phase_used[Water] ) {
|
|
phs.at( pu.phase_pos[Water] ) = rt::wat;
|
|
}
|
|
|
|
if( pu.phase_used[Oil] ) {
|
|
phs.at( pu.phase_pos[Oil] ) = rt::oil;
|
|
}
|
|
|
|
if( pu.phase_used[Gas] ) {
|
|
phs.at( pu.phase_pos[Gas] ) = rt::gas;
|
|
}
|
|
|
|
/* this is a reference or example on **how** to convert from
|
|
* WellState to something understood by opm-output. it is intended
|
|
* to be properly implemented and maintained as a part of
|
|
* simulators, as it relies on simulator internals, details and
|
|
* representations.
|
|
*/
|
|
|
|
for( const auto& wt : this->wellMap() ) {
|
|
const auto w = wt.second[ 0 ];
|
|
if (!this->open_for_output_[w])
|
|
continue;
|
|
|
|
auto& well = res.at( wt.first );
|
|
//well.injectionControl = static_cast<int>(this->currentInjectionControls()[ w ]);
|
|
//well.productionControl = static_cast<int>(this->currentProductionControls()[ w ]);
|
|
const int well_rate_index = w * pu.num_phases;
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::productivity_index_water, this->productivity_index_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::productivity_index_oil, this->productivity_index_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::productivity_index_gas, this->productivity_index_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Water] ) {
|
|
well.rates.set( rt::well_potential_water, this->well_potentials_[well_rate_index + pu.phase_pos[Water]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Oil] ) {
|
|
well.rates.set( rt::well_potential_oil, this->well_potentials_[well_rate_index + pu.phase_pos[Oil]] );
|
|
}
|
|
|
|
if ( pu.phase_used[Gas] ) {
|
|
well.rates.set( rt::well_potential_gas, this->well_potentials_[well_rate_index + pu.phase_pos[Gas]] );
|
|
}
|
|
|
|
if ( pu.has_solvent ) {
|
|
well.rates.set( rt::solvent, solventWellRate(w) );
|
|
}
|
|
|
|
well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] );
|
|
well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] );
|
|
|
|
size_t local_comp_index = 0;
|
|
for( auto& comp : well.connections) {
|
|
const auto rates = this->perfPhaseRates().begin()
|
|
+ (np * wt.second[ 1 ])
|
|
+ (np * local_comp_index);
|
|
++local_comp_index;
|
|
|
|
for( int i = 0; i < np; ++i ) {
|
|
comp.rates.set( phs[ i ], *(rates + i) );
|
|
}
|
|
}
|
|
assert(local_comp_index == this->well_perf_data_[w].size());
|
|
|
|
const auto nseg = this->numSegments(w);
|
|
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
|
|
const auto seg_no = this->segmentNumber(w, seg_ix);
|
|
well.segments[seg_no] =
|
|
this->reportSegmentResults(pu, w, seg_ix, seg_no);
|
|
}
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
/// init the MS well related.
|
|
void initWellStateMSWell(const std::vector<Well>& wells_ecl,
|
|
const PhaseUsage& pu, const WellStateFullyImplicitBlackoil* prev_well_state)
|
|
{
|
|
// still using the order in wells
|
|
const int nw = wells_ecl.size();
|
|
if (nw == 0) {
|
|
return;
|
|
}
|
|
|
|
top_segment_index_.clear();
|
|
top_segment_index_.reserve(nw);
|
|
segpress_.clear();
|
|
segpress_.reserve(nw);
|
|
segrates_.clear();
|
|
segrates_.reserve(nw * numPhases());
|
|
seg_number_.clear();
|
|
|
|
nseg_ = 0;
|
|
int connpos = 0;
|
|
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
|
|
// what we do here, is to set the segment rates and perforation rates
|
|
for (int w = 0; w < nw; ++w) {
|
|
const auto& well_ecl = wells_ecl[w];
|
|
int num_perf_this_well = well_perf_data_[w].size();
|
|
top_segment_index_.push_back(nseg_);
|
|
if ( !well_ecl.isMultiSegment() ) { // not multi-segment well
|
|
nseg_ += 1;
|
|
seg_number_.push_back(1); // Assign single segment (top) as number 1.
|
|
segpress_.push_back(bhp()[w]);
|
|
const int np = numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
segrates_.push_back(wellRates()[np * w + p]);
|
|
}
|
|
} else { // it is a multi-segment well
|
|
const WellSegments& segment_set = well_ecl.getSegments();
|
|
// assuming the order of the perforations in well_ecl is the same with Wells
|
|
const WellConnections& completion_set = well_ecl.getConnections();
|
|
// number of segment for this single well
|
|
const int well_nseg = segment_set.size();
|
|
int n_activeperf = 0;
|
|
nseg_ += well_nseg;
|
|
for (auto segID = 0*well_nseg; segID < well_nseg; ++segID) {
|
|
this->seg_number_.push_back(segment_set[segID].segmentNumber());
|
|
}
|
|
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
|
|
// that is why I think we should use a well model to initialize the WellState here
|
|
std::vector<std::vector<int>> segment_perforations(well_nseg);
|
|
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
|
|
const Connection& connection = completion_set.get(perf);
|
|
if (connection.state() == Connection::State::OPEN) {
|
|
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
|
|
segment_perforations[segment_index].push_back(n_activeperf);
|
|
n_activeperf++;
|
|
}
|
|
}
|
|
|
|
std::vector<std::vector<int>> segment_inlets(well_nseg);
|
|
for (int seg = 0; seg < well_nseg; ++seg) {
|
|
const Segment& segment = segment_set[seg];
|
|
const int segment_number = segment.segmentNumber();
|
|
const int outlet_segment_number = segment.outletSegment();
|
|
if (outlet_segment_number > 0) {
|
|
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
|
|
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
|
|
segment_inlets[outlet_segment_index].push_back(segment_index);
|
|
}
|
|
}
|
|
|
|
|
|
// for the segrates_, now it becomes a recursive solution procedure.
|
|
{
|
|
const int np = numPhases();
|
|
const int start_perf = connpos;
|
|
const int start_perf_next_well = connpos + num_perf_this_well;
|
|
|
|
// make sure the information from wells_ecl consistent with wells
|
|
assert(n_activeperf == (start_perf_next_well - start_perf));
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
const int gaspos = pu.phase_pos[Gas];
|
|
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
|
|
// it will probably benefit the standard well too, while it needs to be justified
|
|
// TODO: to see if this strategy can benefit StandardWell too
|
|
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
|
|
// maybe the best way is to initialize the fractions first then get the rates
|
|
for (int perf = 0; perf < n_activeperf; perf++) {
|
|
const int perf_pos = start_perf + perf;
|
|
perfPhaseRates()[np * perf_pos + gaspos] *= 100.;
|
|
}
|
|
}
|
|
|
|
const std::vector<double> perforation_rates(perfPhaseRates().begin() + np * start_perf,
|
|
perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well
|
|
std::vector<double> segment_rates;
|
|
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
|
|
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(segrates_));
|
|
}
|
|
|
|
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
|
|
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
|
|
// which requres the ordering is successful
|
|
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
|
|
// improved during the solveWellEq process
|
|
{
|
|
// top segment is always the first one, and its pressure is the well bhp
|
|
segpress_.push_back(bhp()[w]);
|
|
const int top_segment = top_segment_index_[w];
|
|
const int start_perf = connpos;
|
|
for (int seg = 1; seg < well_nseg; ++seg) {
|
|
if ( !segment_perforations[seg].empty() ) {
|
|
const int first_perf = segment_perforations[seg][0];
|
|
segpress_.push_back(perfPress()[start_perf + first_perf]);
|
|
} else {
|
|
// segpress_.push_back(bhp); // may not be a good decision
|
|
// using the outlet segment pressure // it needs the ordering is correct
|
|
const int outlet_seg = segment_set[seg].outletSegment();
|
|
segpress_.push_back(segpress_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
connpos += num_perf_this_well;
|
|
}
|
|
assert(int(segpress_.size()) == nseg_);
|
|
assert(int(segrates_.size()) == nseg_ * numPhases() );
|
|
|
|
if (prev_well_state && !prev_well_state->wellMap().empty()) {
|
|
// copying MS well related
|
|
const auto& end = prev_well_state->wellMap().end();
|
|
const int np = numPhases();
|
|
for (int w = 0; w < nw; ++w) {
|
|
const auto& it = prev_well_state->wellMap().find( wells_ecl[w].name() );
|
|
|
|
if (it != end) { // the well is found in the prev_well_state
|
|
// TODO: the well with same name can change a lot, like they might not have same number of segments
|
|
// we need to handle that later.
|
|
// for now, we just copy them.
|
|
const int old_index_well = (*it).second[0];
|
|
const int new_index_well = w;
|
|
const int old_top_segment_index = prev_well_state->topSegmentIndex(old_index_well);
|
|
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
|
|
int number_of_segment = 0;
|
|
// if it is the last well in list
|
|
if (new_index_well == int(top_segment_index_.size()) - 1) {
|
|
number_of_segment = nseg_ - new_top_segmnet_index;
|
|
} else {
|
|
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
|
|
}
|
|
|
|
for (int i = 0; i < number_of_segment * np; ++i) {
|
|
segrates_[new_top_segmnet_index * np + i] = prev_well_state->segRates()[old_top_segment_index * np + i];
|
|
}
|
|
|
|
for (int i = 0; i < number_of_segment; ++i) {
|
|
segpress_[new_top_segmnet_index + i] = prev_well_state->segPress()[old_top_segment_index + i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
|
|
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates)
|
|
{
|
|
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
|
|
// the first segment is always the top segment, its rates should be equal to the well rates.
|
|
assert(segment_inlets.size() == segment_perforations.size());
|
|
const int well_nseg = segment_inlets.size();
|
|
if (segment == 0) { // beginning the calculation
|
|
segment_rates.resize(np * well_nseg, 0.0);
|
|
}
|
|
// contributions from the perforations belong to this segment
|
|
for (const int& perf : segment_perforations[segment]) {
|
|
for (int p = 0; p < np; ++p) {
|
|
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
|
|
}
|
|
}
|
|
for (const int& inlet_seg : segment_inlets[segment]) {
|
|
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
|
|
for (int p = 0; p < np; ++p) {
|
|
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
bool effectiveEventsOccurred(const int w) const {
|
|
return effective_events_occurred_[w];
|
|
}
|
|
|
|
|
|
void setEffectiveEventsOccurred(const int w, const bool effective_events_occurred) {
|
|
effective_events_occurred_[w] = effective_events_occurred;
|
|
}
|
|
|
|
|
|
/// One rate pr well connection.
|
|
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
|
|
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
|
|
|
|
/// One rate pr well
|
|
double solventWellRate(const int w) const {
|
|
int connpos = 0;
|
|
for (int iw = 0; iw < w; ++iw) {
|
|
connpos += this->well_perf_data_[iw].size();
|
|
}
|
|
double solvent_well_rate = 0.0;
|
|
const int endperf = connpos + this->well_perf_data_[w].size();
|
|
for (int perf = connpos; perf < endperf; ++perf ) {
|
|
solvent_well_rate += perfRateSolvent_[perf];
|
|
}
|
|
return solvent_well_rate;
|
|
}
|
|
|
|
std::vector<double>& wellReservoirRates()
|
|
{
|
|
return well_reservoir_rates_;
|
|
}
|
|
|
|
const std::vector<double>& wellReservoirRates() const
|
|
{
|
|
return well_reservoir_rates_;
|
|
}
|
|
|
|
std::vector<double>& wellDissolvedGasRates()
|
|
{
|
|
return well_dissolved_gas_rates_;
|
|
}
|
|
|
|
std::vector<double>& wellVaporizedOilRates()
|
|
{
|
|
return well_vaporized_oil_rates_;
|
|
}
|
|
|
|
const std::vector<double>& segRates() const
|
|
{
|
|
return segrates_;
|
|
}
|
|
|
|
std::vector<double>& segRates()
|
|
{
|
|
return segrates_;
|
|
}
|
|
|
|
const std::vector<double>& segPress() const
|
|
{
|
|
return segpress_;
|
|
}
|
|
|
|
std::vector<double>& segPress()
|
|
{
|
|
return segpress_;
|
|
}
|
|
|
|
int numSegment() const
|
|
{
|
|
return nseg_;
|
|
}
|
|
|
|
int topSegmentIndex(const int w) const
|
|
{
|
|
assert(w < int(top_segment_index_.size()) );
|
|
|
|
return top_segment_index_[w];
|
|
}
|
|
|
|
std::vector<double>& productivityIndex() {
|
|
return productivity_index_;
|
|
}
|
|
|
|
const std::vector<double>& productivityIndex() const {
|
|
return productivity_index_;
|
|
}
|
|
|
|
std::vector<double>& wellPotentials() {
|
|
return well_potentials_;
|
|
}
|
|
|
|
const std::vector<double>& wellPotentials() const {
|
|
return well_potentials_;
|
|
}
|
|
|
|
std::vector<double>& perfThroughput() {
|
|
return perf_water_throughput_;
|
|
}
|
|
|
|
const std::vector<double>& perfThroughput() const {
|
|
return perf_water_throughput_;
|
|
}
|
|
|
|
std::vector<double>& perfSkinPressure() {
|
|
return perf_skin_pressure_;
|
|
}
|
|
|
|
const std::vector<double>& perfSkinPressure() const {
|
|
return perf_skin_pressure_;
|
|
}
|
|
|
|
std::vector<double>& perfWaterVelocity() {
|
|
return perf_water_velocity_;
|
|
}
|
|
|
|
const std::vector<double>& perfWaterVelocity() const {
|
|
return perf_water_velocity_;
|
|
}
|
|
|
|
virtual void shutWell(int well_index) override {
|
|
WellState::shutWell(well_index);
|
|
const int np = numPhases();
|
|
for (int p = 0; p < np; ++p)
|
|
this->well_reservoir_rates_[np * well_index + p] = 0;
|
|
}
|
|
|
|
template<class Comm>
|
|
void communicateGroupRates(const Comm& comm) {
|
|
// sum over all nodes
|
|
for (auto& x : injection_group_rein_rates) {
|
|
comm.sum(x.second.data(), x.second.size());
|
|
}
|
|
for (auto& x : injection_group_vrep_rates) {
|
|
x.second = comm.sum(x.second);
|
|
}
|
|
for (auto& x : production_group_reduction_rates) {
|
|
comm.sum(x.second.data(), x.second.size());
|
|
}
|
|
for (auto& x : injection_group_reduction_rates) {
|
|
comm.sum(x.second.data(), x.second.size());
|
|
}
|
|
for (auto& x : injection_group_reservoir_rates) {
|
|
comm.sum(x.second.data(), x.second.size());
|
|
}
|
|
}
|
|
|
|
template<class Comm>
|
|
void updateGlobalIsGrup(const Schedule& schedule, const int reportStepIdx, const Comm& comm) {
|
|
|
|
int global_well_index = -1;
|
|
const auto& end = wellMap().end();
|
|
for (const auto& well : schedule.getWells(reportStepIdx)) {
|
|
global_well_index ++;
|
|
wellNameToGlobalIdx_[well.name()] = global_well_index;
|
|
|
|
const auto& it = wellMap().find( well.name());
|
|
if (it == end) // the well is not found
|
|
continue;
|
|
|
|
int well_index = it->second[0];
|
|
|
|
if (well.isInjector())
|
|
globalIsInjectionGrup_[global_well_index] = (currentInjectionControls()[well_index] == Well::InjectorCMode::GRUP);
|
|
else
|
|
globalIsProductionGrup_[global_well_index] = (currentProductionControls()[well_index] == Well::ProducerCMode::GRUP);
|
|
}
|
|
comm.sum(globalIsInjectionGrup_.data(), globalIsInjectionGrup_.size());
|
|
comm.sum(globalIsProductionGrup_.data(), globalIsProductionGrup_.size());
|
|
}
|
|
|
|
bool isInjectionGrup(const std::string& name) const {
|
|
|
|
auto it = wellNameToGlobalIdx_.find(name);
|
|
|
|
if (it == wellNameToGlobalIdx_.end())
|
|
OPM_THROW(std::logic_error, "Could not find global injection group for well" << name);
|
|
|
|
return globalIsInjectionGrup_[it->second];
|
|
}
|
|
|
|
bool isProductionGrup(const std::string& name) const {
|
|
|
|
auto it = wellNameToGlobalIdx_.find(name);
|
|
|
|
if (it == wellNameToGlobalIdx_.end())
|
|
OPM_THROW(std::logic_error, "Could not find global injection group for well" << name);
|
|
|
|
return globalIsProductionGrup_[it->second];
|
|
}
|
|
|
|
private:
|
|
std::vector<double> perfphaserates_;
|
|
std::vector<Opm::Well::InjectorCMode> current_injection_controls_;
|
|
std::vector<Well::ProducerCMode> current_production_controls_;
|
|
|
|
// size of global number of wells
|
|
std::vector<int> globalIsInjectionGrup_;
|
|
std::vector<int> globalIsProductionGrup_;
|
|
std::map<std::string, int> wellNameToGlobalIdx_;
|
|
|
|
std::map<std::string, Group::ProductionCMode> current_production_group_controls_;
|
|
std::map<std::pair<Opm::Phase, std::string>, Group::InjectionCMode> current_injection_group_controls_;
|
|
|
|
std::map<std::string, std::vector<double>> production_group_reduction_rates;
|
|
std::map<std::string, std::vector<double>> injection_group_reduction_rates;
|
|
std::map<std::string, std::vector<double>> injection_group_reservoir_rates;
|
|
std::map<std::string, std::vector<double>> injection_group_potentials;
|
|
std::map<std::string, double> injection_group_vrep_rates;
|
|
std::map<std::string, std::vector<double>> injection_group_rein_rates;
|
|
|
|
std::vector<double> perfRateSolvent_;
|
|
|
|
// it is the throughput of water flow through the perforations
|
|
// it is used as a measure of formation damage around well-bore due to particle deposition
|
|
// it will only be used for injectors to check the injectivity
|
|
std::vector<double> perf_water_throughput_;
|
|
|
|
// skin pressure of peforation
|
|
// it will only be used for injectors to check the injectivity
|
|
std::vector<double> perf_skin_pressure_;
|
|
|
|
// it will only be used for injectors to check the injectivity
|
|
// water velocity of perforation
|
|
std::vector<double> perf_water_velocity_;
|
|
|
|
// phase rates under reservoir condition for wells
|
|
// or voidage phase rates
|
|
std::vector<double> well_reservoir_rates_;
|
|
|
|
// dissolved gas rates or solution gas production rates
|
|
// should be zero for injection wells
|
|
std::vector<double> well_dissolved_gas_rates_;
|
|
|
|
// vaporized oil rates or solution oil producation rates
|
|
// should be zero for injection wells
|
|
std::vector<double> well_vaporized_oil_rates_;
|
|
|
|
// some events happens to the well, like this well is a new well
|
|
// or new well control keywords happens
|
|
// \Note: for now, only WCON* keywords, and well status change is considered
|
|
std::vector<bool> effective_events_occurred_;
|
|
|
|
// MS well related
|
|
// for StandardWell, the number of segments will be one
|
|
std::vector<double> segrates_;
|
|
std::vector<double> segpress_;
|
|
// the index of the top segments, which is used to locate the
|
|
// multisegment well related information in WellState
|
|
std::vector<int> top_segment_index_;
|
|
int nseg_; // total number of the segments
|
|
|
|
// Productivity Index
|
|
std::vector<double> productivity_index_;
|
|
|
|
// Well potentials
|
|
std::vector<double> well_potentials_;
|
|
|
|
/// Map segment index to segment number, mostly for MS wells.
|
|
///
|
|
/// Segment number (one-based) of j-th segment in i-th well is
|
|
/// \code
|
|
/// const auto top = topSegmentIndex(i);
|
|
/// const auto seg_No = seg_number_[top + j];
|
|
/// \end
|
|
std::vector<int> seg_number_;
|
|
|
|
::Opm::data::Segment
|
|
reportSegmentResults(const PhaseUsage& pu,
|
|
const int well_id,
|
|
const int seg_ix,
|
|
const int seg_no) const
|
|
{
|
|
auto seg_res = ::Opm::data::Segment{};
|
|
|
|
const auto seg_dof =
|
|
this->topSegmentIndex(well_id) + seg_ix;
|
|
|
|
const auto* rate =
|
|
&this->segRates()[seg_dof * this->numPhases()];
|
|
|
|
seg_res.pressure = this->segPress()[seg_dof];
|
|
|
|
if (pu.phase_used[Water]) {
|
|
seg_res.rates.set(data::Rates::opt::wat,
|
|
rate[pu.phase_pos[Water]]);
|
|
}
|
|
|
|
if (pu.phase_used[Oil]) {
|
|
seg_res.rates.set(data::Rates::opt::oil,
|
|
rate[pu.phase_pos[Oil]]);
|
|
}
|
|
|
|
if (pu.phase_used[Gas]) {
|
|
seg_res.rates.set(data::Rates::opt::gas,
|
|
rate[pu.phase_pos[Gas]]);
|
|
}
|
|
|
|
seg_res.segNumber = seg_no;
|
|
|
|
return seg_res;
|
|
}
|
|
|
|
int numSegments(const int well_id) const
|
|
{
|
|
const auto topseg = this->topSegmentIndex(well_id);
|
|
|
|
return (well_id + 1 == this->numWells()) // Last well?
|
|
? (this->numSegment() - topseg)
|
|
: (this->topSegmentIndex(well_id + 1) - topseg);
|
|
}
|
|
|
|
int segmentNumber(const int well_id, const int seg_id) const
|
|
{
|
|
const auto top_offset = this->topSegmentIndex(well_id);
|
|
|
|
return this->seg_number_[top_offset + seg_id];
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
|
|
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
|