mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-27 09:40:59 -06:00
802 lines
38 KiB
C++
802 lines
38 KiB
C++
// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
|
|
// vi: set et ts=4 sw=4 sts=4:
|
|
/*
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Consult the COPYING file in the top-level source directory of this
|
|
module for the precise wording of the license and the list of
|
|
copyright holders.
|
|
*/
|
|
/*!
|
|
* \file
|
|
*
|
|
* \copydoc Opm::BlackOilLocalResidual
|
|
*/
|
|
#ifndef EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
|
|
#define EWOMS_BLACK_OIL_LOCAL_TPFA_RESIDUAL_HH
|
|
|
|
#include "blackoilproperties.hh"
|
|
#include "blackoilsolventmodules.hh"
|
|
#include "blackoilextbomodules.hh"
|
|
#include "blackoilpolymermodules.hh"
|
|
#include "blackoilenergymodules.hh"
|
|
#include "blackoilfoammodules.hh"
|
|
#include "blackoilbrinemodules.hh"
|
|
#include "blackoildiffusionmodule.hh"
|
|
#include "blackoildispersionmodule.hh"
|
|
#include "blackoilmicpmodules.hh"
|
|
#include <opm/material/fluidstates/BlackOilFluidState.hpp>
|
|
#include <opm/input/eclipse/EclipseState/Grid/FaceDir.hpp>
|
|
#include <opm/input/eclipse/Schedule/BCProp.hpp>
|
|
|
|
namespace Opm {
|
|
/*!
|
|
* \ingroup BlackOilModel
|
|
*
|
|
* \brief Calculates the local residual of the black oil model.
|
|
*/
|
|
template <class TypeTag>
|
|
class BlackOilLocalResidualTPFA : public GetPropType<TypeTag, Properties::DiscLocalResidual>
|
|
{
|
|
using IntensiveQuantities = GetPropType<TypeTag, Properties::IntensiveQuantities>;
|
|
using ExtensiveQuantities = GetPropType<TypeTag, Properties::ExtensiveQuantities>;
|
|
using ElementContext = GetPropType<TypeTag, Properties::ElementContext>;
|
|
using Indices = GetPropType<TypeTag, Properties::Indices>;
|
|
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
|
|
using Evaluation = GetPropType<TypeTag, Properties::Evaluation>;
|
|
using EqVector = GetPropType<TypeTag, Properties::EqVector>;
|
|
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
|
|
using FluidSystem = GetPropType<TypeTag, Properties::FluidSystem>;
|
|
using GridView = GetPropType<TypeTag, Properties::GridView>;
|
|
using Problem = GetPropType<TypeTag, Properties::Problem>;
|
|
using FluidState = typename IntensiveQuantities::FluidState;
|
|
|
|
enum { conti0EqIdx = Indices::conti0EqIdx };
|
|
enum { numEq = getPropValue<TypeTag, Properties::NumEq>() };
|
|
enum { numPhases = getPropValue<TypeTag, Properties::NumPhases>() };
|
|
enum { numComponents = getPropValue<TypeTag, Properties::NumComponents>() };
|
|
|
|
enum { dimWorld = GridView::dimensionworld };
|
|
enum { gasPhaseIdx = FluidSystem::gasPhaseIdx };
|
|
enum { oilPhaseIdx = FluidSystem::oilPhaseIdx };
|
|
enum { waterPhaseIdx = FluidSystem::waterPhaseIdx };
|
|
|
|
enum { gasCompIdx = FluidSystem::gasCompIdx };
|
|
enum { oilCompIdx = FluidSystem::oilCompIdx };
|
|
enum { waterCompIdx = FluidSystem::waterCompIdx };
|
|
enum { compositionSwitchIdx = Indices::compositionSwitchIdx };
|
|
|
|
static const bool waterEnabled = Indices::waterEnabled;
|
|
static const bool gasEnabled = Indices::gasEnabled;
|
|
static const bool oilEnabled = Indices::oilEnabled;
|
|
static const bool compositionSwitchEnabled = (compositionSwitchIdx >= 0);
|
|
|
|
static constexpr bool blackoilConserveSurfaceVolume = getPropValue<TypeTag, Properties::BlackoilConserveSurfaceVolume>();
|
|
|
|
static constexpr bool enableSolvent = getPropValue<TypeTag, Properties::EnableSolvent>();
|
|
static constexpr bool enableExtbo = getPropValue<TypeTag, Properties::EnableExtbo>();
|
|
static constexpr bool enablePolymer = getPropValue<TypeTag, Properties::EnablePolymer>();
|
|
static constexpr bool enableEnergy = getPropValue<TypeTag, Properties::EnableEnergy>();
|
|
static constexpr bool enableFoam = getPropValue<TypeTag, Properties::EnableFoam>();
|
|
static constexpr bool enableBrine = getPropValue<TypeTag, Properties::EnableBrine>();
|
|
static constexpr bool enableDiffusion = getPropValue<TypeTag, Properties::EnableDiffusion>();
|
|
static constexpr bool enableDispersion = getPropValue<TypeTag, Properties::EnableDispersion>();
|
|
static constexpr bool enableMICP = getPropValue<TypeTag, Properties::EnableMICP>();
|
|
|
|
using SolventModule = BlackOilSolventModule<TypeTag>;
|
|
using ExtboModule = BlackOilExtboModule<TypeTag>;
|
|
using PolymerModule = BlackOilPolymerModule<TypeTag>;
|
|
using EnergyModule = BlackOilEnergyModule<TypeTag>;
|
|
using FoamModule = BlackOilFoamModule<TypeTag>;
|
|
using BrineModule = BlackOilBrineModule<TypeTag>;
|
|
using DiffusionModule = BlackOilDiffusionModule<TypeTag, enableDiffusion>;
|
|
using DispersionModule = BlackOilDispersionModule<TypeTag, enableDispersion>;
|
|
using MICPModule = BlackOilMICPModule<TypeTag>;
|
|
|
|
using Toolbox = MathToolbox<Evaluation>;
|
|
|
|
public:
|
|
|
|
struct ResidualNBInfo
|
|
{
|
|
double trans;
|
|
double faceArea;
|
|
double thpres;
|
|
double dZg;
|
|
int dirId;
|
|
double Vin;
|
|
double Vex;
|
|
double inAlpha;
|
|
double outAlpha;
|
|
double diffusivity;
|
|
double dispersivity;
|
|
};
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeStorage
|
|
*/
|
|
template <class LhsEval>
|
|
void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
const IntensiveQuantities& intQuants = elemCtx.intensiveQuantities(dofIdx, timeIdx);
|
|
computeStorage(storage,
|
|
intQuants);
|
|
}
|
|
|
|
template <class LhsEval>
|
|
static void computeStorage(Dune::FieldVector<LhsEval, numEq>& storage,
|
|
const IntensiveQuantities& intQuants)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeStorage);
|
|
// retrieve the intensive quantities for the SCV at the specified point in time
|
|
const auto& fs = intQuants.fluidState();
|
|
storage = 0.0;
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
LhsEval surfaceVolume =
|
|
Toolbox::template decay<LhsEval>(fs.saturation(phaseIdx))
|
|
* Toolbox::template decay<LhsEval>(fs.invB(phaseIdx))
|
|
* Toolbox::template decay<LhsEval>(intQuants.porosity());
|
|
|
|
storage[conti0EqIdx + activeCompIdx] += surfaceVolume;
|
|
|
|
// account for dissolved gas
|
|
if (phaseIdx == oilPhaseIdx && FluidSystem::enableDissolvedGas()) {
|
|
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
|
storage[conti0EqIdx + activeGasCompIdx] +=
|
|
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rs())
|
|
* surfaceVolume;
|
|
}
|
|
|
|
// account for dissolved gas in water
|
|
if (phaseIdx == waterPhaseIdx && FluidSystem::enableDissolvedGasInWater()) {
|
|
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
|
storage[conti0EqIdx + activeGasCompIdx] +=
|
|
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rsw())
|
|
* surfaceVolume;
|
|
}
|
|
|
|
// account for vaporized oil
|
|
if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedOil()) {
|
|
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
|
storage[conti0EqIdx + activeOilCompIdx] +=
|
|
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rv())
|
|
* surfaceVolume;
|
|
}
|
|
|
|
// account for vaporized water
|
|
if (phaseIdx == gasPhaseIdx && FluidSystem::enableVaporizedWater()) {
|
|
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
|
storage[conti0EqIdx + activeWaterCompIdx] +=
|
|
Toolbox::template decay<LhsEval>(intQuants.fluidState().Rvw())
|
|
* surfaceVolume;
|
|
}
|
|
}
|
|
|
|
adaptMassConservationQuantities_(storage, intQuants.pvtRegionIndex());
|
|
|
|
// deal with solvents (if present)
|
|
SolventModule::addStorage(storage, intQuants);
|
|
|
|
// deal with zFracton (if present)
|
|
ExtboModule::addStorage(storage, intQuants);
|
|
|
|
// deal with polymer (if present)
|
|
PolymerModule::addStorage(storage, intQuants);
|
|
|
|
// deal with energy (if present)
|
|
EnergyModule::addStorage(storage, intQuants);
|
|
|
|
// deal with foam (if present)
|
|
FoamModule::addStorage(storage, intQuants);
|
|
|
|
// deal with salt (if present)
|
|
BrineModule::addStorage(storage, intQuants);
|
|
|
|
// deal with micp (if present)
|
|
MICPModule::addStorage(storage, intQuants);
|
|
}
|
|
|
|
/*!
|
|
* This function works like the ElementContext-based version with
|
|
* one main difference: The darcy flux is calculated here, not
|
|
* read from the extensive quantities of the element context.
|
|
*/
|
|
static void computeFlux(RateVector& flux,
|
|
RateVector& darcy,
|
|
const unsigned globalIndexIn,
|
|
const unsigned globalIndexEx,
|
|
const IntensiveQuantities& intQuantsIn,
|
|
const IntensiveQuantities& intQuantsEx,
|
|
const ResidualNBInfo& nbInfo)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeFlux);
|
|
flux = 0.0;
|
|
darcy = 0.0;
|
|
|
|
calculateFluxes_(flux,
|
|
darcy,
|
|
intQuantsIn,
|
|
intQuantsEx,
|
|
globalIndexIn,
|
|
globalIndexEx,
|
|
nbInfo);
|
|
}
|
|
|
|
// This function demonstrates compatibility with the ElementContext-based interface.
|
|
// Actually using it will lead to double work since the element context already contains
|
|
// fluxes through its stored ExtensiveQuantities.
|
|
static void computeFlux(RateVector& flux,
|
|
const ElementContext& elemCtx,
|
|
unsigned scvfIdx,
|
|
unsigned timeIdx)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeFlux);
|
|
assert(timeIdx == 0);
|
|
|
|
flux = 0.0;
|
|
RateVector darcy = 0.0;
|
|
// need for dary flux calculation
|
|
const auto& problem = elemCtx.problem();
|
|
const auto& stencil = elemCtx.stencil(timeIdx);
|
|
const auto& scvf = stencil.interiorFace(scvfIdx);
|
|
|
|
unsigned interiorDofIdx = scvf.interiorIndex();
|
|
unsigned exteriorDofIdx = scvf.exteriorIndex();
|
|
assert(interiorDofIdx != exteriorDofIdx);
|
|
|
|
// unsigned I = stencil.globalSpaceIndex(interiorDofIdx);
|
|
// unsigned J = stencil.globalSpaceIndex(exteriorDofIdx);
|
|
Scalar Vin = elemCtx.dofVolume(interiorDofIdx, /*timeIdx=*/0);
|
|
Scalar Vex = elemCtx.dofVolume(exteriorDofIdx, /*timeIdx=*/0);
|
|
const auto& globalIndexIn = stencil.globalSpaceIndex(interiorDofIdx);
|
|
const auto& globalIndexEx = stencil.globalSpaceIndex(exteriorDofIdx);
|
|
Scalar trans = problem.transmissibility(elemCtx, interiorDofIdx, exteriorDofIdx);
|
|
Scalar faceArea = scvf.area();
|
|
const auto dirid = scvf.dirId();
|
|
Scalar thpres = problem.thresholdPressure(globalIndexIn, globalIndexEx);
|
|
|
|
// estimate the gravity correction: for performance reasons we use a simplified
|
|
// approach for this flux module that assumes that gravity is constant and always
|
|
// acts into the downwards direction. (i.e., no centrifuge experiments, sorry.)
|
|
const Scalar g = problem.gravity()[dimWorld - 1];
|
|
const auto& intQuantsIn = elemCtx.intensiveQuantities(interiorDofIdx, timeIdx);
|
|
const auto& intQuantsEx = elemCtx.intensiveQuantities(exteriorDofIdx, timeIdx);
|
|
|
|
// this is quite hacky because the dune grid interface does not provide a
|
|
// cellCenterDepth() method (so we ask the problem to provide it). The "good"
|
|
// solution would be to take the Z coordinate of the element centroids, but since
|
|
// ECL seems to like to be inconsistent on that front, it needs to be done like
|
|
// here...
|
|
const Scalar zIn = problem.dofCenterDepth(elemCtx, interiorDofIdx, timeIdx);
|
|
const Scalar zEx = problem.dofCenterDepth(elemCtx, exteriorDofIdx, timeIdx);
|
|
// the distances from the DOF's depths. (i.e., the additional depth of the
|
|
// exterior DOF)
|
|
const Scalar distZ = zIn - zEx;
|
|
// for thermal harmonic mean of half trans
|
|
const Scalar inAlpha = problem.thermalHalfTransmissibility(globalIndexIn, globalIndexEx);
|
|
const Scalar outAlpha = problem.thermalHalfTransmissibility(globalIndexEx, globalIndexIn);
|
|
const Scalar diffusivity = problem.diffusivity(globalIndexEx, globalIndexIn);
|
|
const Scalar dispersivity = problem.dispersivity(globalIndexEx, globalIndexIn);
|
|
|
|
const ResidualNBInfo res_nbinfo {trans, faceArea, thpres, distZ * g, dirid, Vin, Vex, inAlpha, outAlpha, diffusivity, dispersivity};
|
|
|
|
calculateFluxes_(flux,
|
|
darcy,
|
|
intQuantsIn,
|
|
intQuantsEx,
|
|
globalIndexIn,
|
|
globalIndexEx,
|
|
res_nbinfo);
|
|
}
|
|
|
|
static void calculateFluxes_(RateVector& flux,
|
|
RateVector& darcy,
|
|
const IntensiveQuantities& intQuantsIn,
|
|
const IntensiveQuantities& intQuantsEx,
|
|
const unsigned& globalIndexIn,
|
|
const unsigned& globalIndexEx,
|
|
const ResidualNBInfo& nbInfo)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(calculateFluxes);
|
|
const Scalar Vin = nbInfo.Vin;
|
|
const Scalar Vex = nbInfo.Vex;
|
|
const Scalar distZg = nbInfo.dZg;
|
|
const Scalar thpres = nbInfo.thpres;
|
|
const Scalar trans = nbInfo.trans;
|
|
const Scalar faceArea = nbInfo.faceArea;
|
|
FaceDir::DirEnum facedir = faceDirFromDirId(nbInfo.dirId);
|
|
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx))
|
|
continue;
|
|
// darcy flux calculation
|
|
short dnIdx;
|
|
//
|
|
short upIdx;
|
|
// fake intices should only be used to get upwind anc compatibility with old functions
|
|
short interiorDofIdx = 0; // NB
|
|
short exteriorDofIdx = 1; // NB
|
|
Evaluation pressureDifference;
|
|
ExtensiveQuantities::calculatePhasePressureDiff_(upIdx,
|
|
dnIdx,
|
|
pressureDifference,
|
|
intQuantsIn,
|
|
intQuantsEx,
|
|
phaseIdx, // input
|
|
interiorDofIdx, // input
|
|
exteriorDofIdx, // input
|
|
Vin,
|
|
Vex,
|
|
globalIndexIn,
|
|
globalIndexEx,
|
|
distZg,
|
|
thpres);
|
|
|
|
|
|
|
|
const IntensiveQuantities& up = (upIdx == interiorDofIdx) ? intQuantsIn : intQuantsEx;
|
|
unsigned globalUpIndex = (upIdx == interiorDofIdx) ? globalIndexIn : globalIndexEx;
|
|
// Use arithmetic average (more accurate with harmonic, but that requires recomputing the transmissbility)
|
|
const Evaluation transMult = (intQuantsIn.rockCompTransMultiplier() + Toolbox::value(intQuantsEx.rockCompTransMultiplier()))/2;
|
|
Evaluation darcyFlux;
|
|
if (pressureDifference == 0) {
|
|
darcyFlux = 0.0; // NB maybe we could drop calculations
|
|
} else {
|
|
if (globalUpIndex == globalIndexIn)
|
|
darcyFlux = pressureDifference * up.mobility(phaseIdx, facedir) * transMult * (-trans / faceArea);
|
|
else
|
|
darcyFlux = pressureDifference *
|
|
(Toolbox::value(up.mobility(phaseIdx, facedir)) * transMult * (-trans / faceArea));
|
|
}
|
|
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
darcy[conti0EqIdx + activeCompIdx] = darcyFlux.value() * faceArea; // NB! For the FLORES fluxes without derivatives
|
|
|
|
unsigned pvtRegionIdx = up.pvtRegionIndex();
|
|
// if (upIdx == globalFocusDofIdx){
|
|
if (globalUpIndex == globalIndexIn) {
|
|
const auto& invB
|
|
= getInvB_<FluidSystem, FluidState, Evaluation>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
|
const auto& surfaceVolumeFlux = invB * darcyFlux;
|
|
evalPhaseFluxes_<Evaluation, Evaluation, FluidState>(
|
|
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
|
if constexpr (enableEnergy) {
|
|
EnergyModule::template addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>(
|
|
flux, phaseIdx, darcyFlux, up.fluidState());
|
|
}
|
|
} else {
|
|
const auto& invB = getInvB_<FluidSystem, FluidState, Scalar>(up.fluidState(), phaseIdx, pvtRegionIdx);
|
|
const auto& surfaceVolumeFlux = invB * darcyFlux;
|
|
evalPhaseFluxes_<Scalar, Evaluation, FluidState>(
|
|
flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, up.fluidState());
|
|
if constexpr (enableEnergy) {
|
|
EnergyModule::template
|
|
addPhaseEnthalpyFluxes_<Scalar, Evaluation, FluidState>
|
|
(flux,phaseIdx,darcyFlux, up.fluidState());
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
// deal with solvents (if present)
|
|
static_assert(!enableSolvent, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// SolventModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with zFracton (if present)
|
|
static_assert(!enableExtbo, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// ExtboModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with polymer (if present)
|
|
static_assert(!enablePolymer, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// PolymerModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with energy (if present)
|
|
if constexpr(enableEnergy){
|
|
const Scalar inAlpha = nbInfo.inAlpha;
|
|
const Scalar outAlpha = nbInfo.outAlpha;
|
|
Evaluation heatFlux;
|
|
{
|
|
short interiorDofIdx = 0; // NB
|
|
short exteriorDofIdx = 1; // NB
|
|
|
|
EnergyModule::ExtensiveQuantities::template updateEnergy(heatFlux,
|
|
interiorDofIdx, // focusDofIndex,
|
|
interiorDofIdx,
|
|
exteriorDofIdx,
|
|
intQuantsIn,
|
|
intQuantsEx,
|
|
intQuantsIn.fluidState(),
|
|
intQuantsEx.fluidState(),
|
|
inAlpha,
|
|
outAlpha,
|
|
faceArea);
|
|
}
|
|
EnergyModule::addHeatFlux(flux, heatFlux);
|
|
}
|
|
// NB need to be tha last energy call since it does scaling
|
|
// EnergyModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with foam (if present)
|
|
static_assert(!enableFoam, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// FoamModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with salt (if present)
|
|
static_assert(!enableBrine, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// BrineModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
// deal with diffusion (if present). opm-models expects per area flux (added in the tmpdiffusivity).
|
|
if constexpr(enableDiffusion){
|
|
typename DiffusionModule::ExtensiveQuantities::EvaluationArray effectiveDiffusionCoefficient;
|
|
DiffusionModule::ExtensiveQuantities::update(effectiveDiffusionCoefficient, intQuantsIn, intQuantsEx);
|
|
const Scalar diffusivity = nbInfo.diffusivity;
|
|
const Scalar tmpdiffusivity = diffusivity / faceArea;
|
|
DiffusionModule::addDiffusiveFlux(flux,
|
|
intQuantsIn.fluidState(),
|
|
intQuantsEx.fluidState(),
|
|
tmpdiffusivity,
|
|
effectiveDiffusionCoefficient);
|
|
|
|
}
|
|
// deal with dispersion (if present). opm-models expects per area flux (added in the tmpdispersivity).
|
|
if constexpr(enableDispersion){
|
|
typename DispersionModule::ExtensiveQuantities::ScalarArray normVelocityAvg;
|
|
DispersionModule::ExtensiveQuantities::update(normVelocityAvg, intQuantsIn, intQuantsEx);
|
|
const Scalar dispersivity = nbInfo.dispersivity;
|
|
const Scalar tmpdispersivity = dispersivity / faceArea;
|
|
DispersionModule::addDispersiveFlux(flux,
|
|
intQuantsIn.fluidState(),
|
|
intQuantsEx.fluidState(),
|
|
tmpdispersivity,
|
|
normVelocityAvg);
|
|
|
|
}
|
|
// deal with micp (if present)
|
|
static_assert(!enableMICP, "Relevant computeFlux() method must be implemented for this module before enabling.");
|
|
// MICPModule::computeFlux(flux, elemCtx, scvfIdx, timeIdx);
|
|
|
|
}
|
|
|
|
template <class BoundaryConditionData>
|
|
static void computeBoundaryFlux(RateVector& bdyFlux,
|
|
const Problem& problem,
|
|
const BoundaryConditionData& bdyInfo,
|
|
const IntensiveQuantities& insideIntQuants,
|
|
unsigned globalSpaceIdx)
|
|
{
|
|
if (bdyInfo.type == BCType::NONE) {
|
|
bdyFlux = 0.0;
|
|
} else if (bdyInfo.type == BCType::RATE) {
|
|
computeBoundaryFluxRate(bdyFlux, bdyInfo);
|
|
} else if (bdyInfo.type == BCType::FREE || bdyInfo.type == BCType::DIRICHLET) {
|
|
computeBoundaryFluxFree(problem, bdyFlux, bdyInfo, insideIntQuants, globalSpaceIdx);
|
|
} else {
|
|
throw std::logic_error("Unknown boundary condition type " + std::to_string(static_cast<int>(bdyInfo.type)) + " in computeBoundaryFlux()." );
|
|
}
|
|
}
|
|
|
|
template <class BoundaryConditionData>
|
|
static void computeBoundaryFluxRate(RateVector& bdyFlux,
|
|
const BoundaryConditionData& bdyInfo)
|
|
{
|
|
bdyFlux.setMassRate(bdyInfo.massRate, bdyInfo.pvtRegionIdx);
|
|
}
|
|
|
|
template <class BoundaryConditionData>
|
|
static void computeBoundaryFluxFree(const Problem& problem,
|
|
RateVector& bdyFlux,
|
|
const BoundaryConditionData& bdyInfo,
|
|
const IntensiveQuantities& insideIntQuants,
|
|
unsigned globalSpaceIdx)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeBoundaryFluxFree);
|
|
std::array<short, numPhases> upIdx;
|
|
std::array<short, numPhases> dnIdx;
|
|
std::array<Evaluation, numPhases> volumeFlux;
|
|
std::array<Evaluation, numPhases> pressureDifference;
|
|
|
|
ExtensiveQuantities::calculateBoundaryGradients_(problem,
|
|
globalSpaceIdx,
|
|
insideIntQuants,
|
|
bdyInfo.boundaryFaceIndex,
|
|
bdyInfo.faceArea,
|
|
bdyInfo.faceZCoord,
|
|
bdyInfo.exFluidState,
|
|
upIdx,
|
|
dnIdx,
|
|
volumeFlux,
|
|
pressureDifference);
|
|
|
|
////////
|
|
// advective fluxes of all components in all phases
|
|
////////
|
|
bdyFlux = 0.0;
|
|
for (unsigned phaseIdx = 0; phaseIdx < numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
const auto& pBoundary = bdyInfo.exFluidState.pressure(phaseIdx);
|
|
const Evaluation& pInside = insideIntQuants.fluidState().pressure(phaseIdx);
|
|
const unsigned pvtRegionIdx = insideIntQuants.pvtRegionIndex();
|
|
|
|
RateVector tmp(0.0);
|
|
const auto& darcyFlux = volumeFlux[phaseIdx];
|
|
// mass conservation
|
|
if (pBoundary < pInside) {
|
|
// outflux
|
|
const auto& invB = getInvB_<FluidSystem, FluidState, Evaluation>(insideIntQuants.fluidState(), phaseIdx, pvtRegionIdx);
|
|
Evaluation surfaceVolumeFlux = invB * darcyFlux;
|
|
evalPhaseFluxes_<Evaluation>(tmp,
|
|
phaseIdx,
|
|
insideIntQuants.pvtRegionIndex(),
|
|
surfaceVolumeFlux,
|
|
insideIntQuants.fluidState());
|
|
if constexpr (enableEnergy) {
|
|
EnergyModule::template
|
|
addPhaseEnthalpyFluxes_<Evaluation, Evaluation, FluidState>
|
|
(tmp, phaseIdx, darcyFlux, insideIntQuants.fluidState());
|
|
}
|
|
} else if (pBoundary > pInside) {
|
|
// influx
|
|
using ScalarFluidState = decltype(bdyInfo.exFluidState);
|
|
const auto& invB = getInvB_<FluidSystem, ScalarFluidState, Scalar>(bdyInfo.exFluidState, phaseIdx, pvtRegionIdx);
|
|
Evaluation surfaceVolumeFlux = invB * darcyFlux;
|
|
evalPhaseFluxes_<Scalar>(tmp,
|
|
phaseIdx,
|
|
insideIntQuants.pvtRegionIndex(),
|
|
surfaceVolumeFlux,
|
|
bdyInfo.exFluidState);
|
|
if constexpr (enableEnergy) {
|
|
EnergyModule::template
|
|
addPhaseEnthalpyFluxes_<Scalar, Evaluation, ScalarFluidState>
|
|
(tmp,
|
|
phaseIdx,
|
|
darcyFlux,
|
|
bdyInfo.exFluidState);
|
|
}
|
|
}
|
|
|
|
for (unsigned i = 0; i < tmp.size(); ++i) {
|
|
bdyFlux[i] += tmp[i];
|
|
}
|
|
}
|
|
|
|
// conductive heat flux from boundary
|
|
if constexpr(enableEnergy){
|
|
Evaluation heatFlux;
|
|
// avoid overload of functions with same numeber of elements in eclproblem
|
|
Scalar alpha = problem.eclTransmissibilities().thermalHalfTransBoundary(globalSpaceIdx, bdyInfo.boundaryFaceIndex);
|
|
unsigned inIdx = 0;//dummy
|
|
// always calculated with derivatives of this cell
|
|
EnergyModule::ExtensiveQuantities::template updateEnergyBoundary(heatFlux,
|
|
insideIntQuants,
|
|
/*focusDofIndex*/ inIdx,
|
|
inIdx,
|
|
alpha,
|
|
bdyInfo.exFluidState);
|
|
EnergyModule::addHeatFlux(bdyFlux, heatFlux);
|
|
}
|
|
|
|
static_assert(!enableSolvent, "Relevant treatment of boundary conditions must be implemented before enabling.");
|
|
static_assert(!enablePolymer, "Relevant treatment of boundary conditions must be implemented before enabling.");
|
|
static_assert(!enableMICP, "Relevant treatment of boundary conditions must be implemented before enabling.");
|
|
|
|
// make sure that the right mass conservation quantities are used
|
|
adaptMassConservationQuantities_(bdyFlux, insideIntQuants.pvtRegionIndex());
|
|
|
|
#ifndef NDEBUG
|
|
for (unsigned i = 0; i < numEq; ++i) {
|
|
Valgrind::CheckDefined(bdyFlux[i]);
|
|
}
|
|
Valgrind::CheckDefined(bdyFlux);
|
|
#endif
|
|
}
|
|
|
|
static void computeSource(RateVector& source,
|
|
const Problem& problem,
|
|
unsigned globalSpaceIdex,
|
|
unsigned timeIdx)
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeSource);
|
|
// retrieve the source term intrinsic to the problem
|
|
problem.source(source, globalSpaceIdex, timeIdx);
|
|
|
|
// deal with MICP (if present)
|
|
// deal with micp (if present)
|
|
static_assert(!enableMICP, "Relevant addSource() method must be implemented for this module before enabling.");
|
|
// MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
|
|
|
|
// scale the source term of the energy equation
|
|
if (enableEnergy)
|
|
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
|
|
}
|
|
|
|
static void computeSourceDense(RateVector& source,
|
|
const Problem& problem,
|
|
unsigned globalSpaceIdex,
|
|
unsigned timeIdx)
|
|
{
|
|
source = 0.0;
|
|
problem.addToSourceDense(source, globalSpaceIdex, timeIdx);
|
|
|
|
// deal with MICP (if present)
|
|
// deal with micp (if present)
|
|
static_assert(!enableMICP, "Relevant addSource() method must be implemented for this module before enabling.");
|
|
// MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
|
|
|
|
// scale the source term of the energy equation
|
|
if (enableEnergy)
|
|
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
|
|
}
|
|
|
|
/*!
|
|
* \copydoc FvBaseLocalResidual::computeSource
|
|
*/
|
|
void computeSource(RateVector& source,
|
|
const ElementContext& elemCtx,
|
|
unsigned dofIdx,
|
|
unsigned timeIdx) const
|
|
{
|
|
OPM_TIMEBLOCK_LOCAL(computeSource);
|
|
// retrieve the source term intrinsic to the problem
|
|
elemCtx.problem().source(source, elemCtx, dofIdx, timeIdx);
|
|
|
|
// deal with MICP (if present)
|
|
MICPModule::addSource(source, elemCtx, dofIdx, timeIdx);
|
|
|
|
// scale the source term of the energy equation
|
|
if constexpr(enableEnergy)
|
|
source[Indices::contiEnergyEqIdx] *= getPropValue<TypeTag, Properties::BlackOilEnergyScalingFactor>();
|
|
}
|
|
|
|
template <class UpEval, class FluidState>
|
|
static void evalPhaseFluxes_(RateVector& flux,
|
|
unsigned phaseIdx,
|
|
unsigned pvtRegionIdx,
|
|
const ExtensiveQuantities& extQuants,
|
|
const FluidState& upFs)
|
|
{
|
|
|
|
const auto& invB = getInvB_<FluidSystem, FluidState, UpEval>(upFs, phaseIdx, pvtRegionIdx);
|
|
const auto& surfaceVolumeFlux = invB * extQuants.volumeFlux(phaseIdx);
|
|
evalPhaseFluxes_<UpEval>(flux, phaseIdx, pvtRegionIdx, surfaceVolumeFlux, upFs);
|
|
}
|
|
|
|
/*!
|
|
* \brief Helper function to calculate the flux of mass in terms of conservation
|
|
* quantities via specific fluid phase over a face.
|
|
*/
|
|
template <class UpEval, class Eval,class FluidState>
|
|
static void evalPhaseFluxes_(RateVector& flux,
|
|
unsigned phaseIdx,
|
|
unsigned pvtRegionIdx,
|
|
const Eval& surfaceVolumeFlux,
|
|
const FluidState& upFs)
|
|
{
|
|
unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
|
|
if (blackoilConserveSurfaceVolume)
|
|
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux;
|
|
else
|
|
flux[conti0EqIdx + activeCompIdx] += surfaceVolumeFlux*FluidSystem::referenceDensity(phaseIdx, pvtRegionIdx);
|
|
|
|
if (phaseIdx == oilPhaseIdx) {
|
|
// dissolved gas (in the oil phase).
|
|
if (FluidSystem::enableDissolvedGas()) {
|
|
const auto& Rs = BlackOil::getRs_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
|
|
|
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
|
if (blackoilConserveSurfaceVolume)
|
|
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux;
|
|
else
|
|
flux[conti0EqIdx + activeGasCompIdx] += Rs*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
|
}
|
|
} else if (phaseIdx == waterPhaseIdx) {
|
|
// dissolved gas (in the water phase).
|
|
if (FluidSystem::enableDissolvedGasInWater()) {
|
|
const auto& Rsw = BlackOil::getRsw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
|
|
|
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
|
if (blackoilConserveSurfaceVolume)
|
|
flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux;
|
|
else
|
|
flux[conti0EqIdx + activeGasCompIdx] += Rsw*surfaceVolumeFlux*FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
|
}
|
|
}
|
|
else if (phaseIdx == gasPhaseIdx) {
|
|
// vaporized oil (in the gas phase).
|
|
if (FluidSystem::enableVaporizedOil()) {
|
|
const auto& Rv = BlackOil::getRv_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
|
|
|
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
|
if (blackoilConserveSurfaceVolume)
|
|
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux;
|
|
else
|
|
flux[conti0EqIdx + activeOilCompIdx] += Rv*surfaceVolumeFlux*FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
|
}
|
|
// vaporized water (in the gas phase).
|
|
if (FluidSystem::enableVaporizedWater()) {
|
|
const auto& Rvw = BlackOil::getRvw_<FluidSystem, FluidState, UpEval>(upFs, pvtRegionIdx);
|
|
|
|
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
|
if (blackoilConserveSurfaceVolume)
|
|
flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux;
|
|
else
|
|
flux[conti0EqIdx + activeWaterCompIdx] += Rvw*surfaceVolumeFlux*FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Helper function to convert the mass-related parts of a Dune::FieldVector
|
|
* that stores conservation quantities in terms of "surface-volume" to the
|
|
* conservation quantities used by the model.
|
|
*
|
|
* Depending on the value of the BlackoilConserveSurfaceVolume property, the model
|
|
* either conserves mass by means of "surface volume" of the components or mass
|
|
* directly. In the former case, this method is a no-op; in the latter, the values
|
|
* passed are multiplied by their respective pure component's density at surface
|
|
* conditions.
|
|
*/
|
|
template <class Scalar>
|
|
static void adaptMassConservationQuantities_(Dune::FieldVector<Scalar, numEq>& container, unsigned pvtRegionIdx)
|
|
{
|
|
if (blackoilConserveSurfaceVolume)
|
|
return;
|
|
|
|
// convert "surface volume" to mass. this is complicated a bit by the fact that
|
|
// not all phases are necessarily enabled. (we here assume that if a fluid phase
|
|
// is disabled, its respective "main" component is not considered as well.)
|
|
|
|
if (waterEnabled) {
|
|
unsigned activeWaterCompIdx = Indices::canonicalToActiveComponentIndex(waterCompIdx);
|
|
container[conti0EqIdx + activeWaterCompIdx] *=
|
|
FluidSystem::referenceDensity(waterPhaseIdx, pvtRegionIdx);
|
|
}
|
|
|
|
if (gasEnabled) {
|
|
unsigned activeGasCompIdx = Indices::canonicalToActiveComponentIndex(gasCompIdx);
|
|
container[conti0EqIdx + activeGasCompIdx] *=
|
|
FluidSystem::referenceDensity(gasPhaseIdx, pvtRegionIdx);
|
|
}
|
|
|
|
if (oilEnabled) {
|
|
unsigned activeOilCompIdx = Indices::canonicalToActiveComponentIndex(oilCompIdx);
|
|
container[conti0EqIdx + activeOilCompIdx] *=
|
|
FluidSystem::referenceDensity(oilPhaseIdx, pvtRegionIdx);
|
|
}
|
|
}
|
|
|
|
|
|
static FaceDir::DirEnum faceDirFromDirId(const int dirId)
|
|
{
|
|
// NNC does not have a direction
|
|
if (dirId < 0 ) {
|
|
return FaceDir::DirEnum::Unknown;
|
|
}
|
|
return FaceDir::FromIntersectionIndex(dirId);
|
|
}
|
|
};
|
|
|
|
} // namespace Opm
|
|
|
|
#endif
|