opm-simulators/opm/autodiff/FullyImplicitBlackoilSolver_impl.hpp
Bård Skaflestad eccc5c9694 variableState: Use pre-computed list of "all cells"
Class FullyImplicitBlackoilSolver<Grid> already features a list of
"all" cells, built at object construction time.  There's no need to
re-compute that list on every call to variableState() (when Gas is
active).
2014-07-03 00:27:17 +02:00

2124 lines
75 KiB
C++

/*
Copyright 2013 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <opm/autodiff/FullyImplicitBlackoilSolver.hpp>
#include <opm/autodiff/AutoDiffBlock.hpp>
#include <opm/autodiff/AutoDiffHelpers.hpp>
#include <opm/autodiff/GridHelpers.hpp>
#include <opm/autodiff/BlackoilPropsAdInterface.hpp>
#include <opm/autodiff/GeoProps.hpp>
#include <opm/autodiff/WellDensitySegmented.hpp>
#include <opm/autodiff/WellStateFullyImplicitBlackoil.hpp>
#include <opm/core/grid.h>
#include <opm/core/linalg/LinearSolverInterface.hpp>
#include <opm/core/props/rock/RockCompressibility.hpp>
#include <opm/core/simulator/BlackoilState.hpp>
#include <opm/core/utility/ErrorMacros.hpp>
#include <opm/core/utility/Exceptions.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/well_controls.h>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <cassert>
#include <cmath>
#include <iostream>
#include <iomanip>
//#include <fstream>
// A debugging utility.
#define DUMP(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< collapseJacs(foo) << std::endl; \
} while (0)
#define DUMPVAL(foo) \
do { \
std::cout << "==========================================\n" \
<< #foo ":\n" \
<< foo.value() << std::endl; \
} while (0)
#define DISKVAL(foo) \
do { \
std::ofstream os(#foo); \
os.precision(16); \
os << foo.value() << std::endl; \
} while (0)
namespace Opm {
typedef AutoDiffBlock<double> ADB;
typedef ADB::V V;
typedef ADB::M M;
typedef Eigen::Array<double,
Eigen::Dynamic,
Eigen::Dynamic,
Eigen::RowMajor> DataBlock;
namespace {
std::vector<int>
buildAllCells(const int nc)
{
std::vector<int> all_cells(nc);
for (int c = 0; c < nc; ++c) { all_cells[c] = c; }
return all_cells;
}
template <class GeoProps, class Grid>
AutoDiffBlock<double>::M
gravityOperator(const Grid& grid,
const HelperOps& ops ,
const GeoProps& geo )
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid);
typedef typename Opm::UgGridHelpers::Cell2FacesTraits<Grid>::Type Cell2Faces;
Cell2Faces c2f = cell2Faces(grid);
std::vector<int> f2hf(2 * numFaces(grid), -1);
typename ADFaceCellTraits<Grid>::Type
face_cells = faceCells(grid);
for (int c = 0, i = 0; c < nc; ++c) {
typename Cell2Faces::row_type faces=c2f[c];
typedef typename Cell2Faces::row_type::iterator Iter;
for (Iter f=faces.begin(), end=faces.end(); f!=end; ++f) {
const int p = 0 + (face_cells(*f, 0) != c);
f2hf[2*(*f) + p] = i;
}
}
typedef AutoDiffBlock<double>::V V;
typedef AutoDiffBlock<double>::M M;
const V& gpot = geo.gravityPotential();
const V& trans = geo.transmissibility();
const HelperOps::IFaces::Index ni = ops.internal_faces.size();
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> grav; grav.reserve(2 * ni);
for (HelperOps::IFaces::Index i = 0; i < ni; ++i) {
const int f = ops.internal_faces[ i ];
const int c1 = faceCells(grid)(f, 0);
const int c2 = faceCells(grid)(f, 1);
assert ((c1 >= 0) && (c2 >= 0));
const double dG1 = gpot[ f2hf[2*f + 0] ];
const double dG2 = gpot[ f2hf[2*f + 1] ];
const double t = trans[ f ];
grav.push_back(Tri(i, c1, t * dG1));
grav.push_back(Tri(i, c2, - t * dG2));
}
M G(ni, nc); G.setFromTriplets(grav.begin(), grav.end());
return G;
}
template<class Grid>
V computePerfPress(const Grid& grid, const Wells& wells, const V& rho, const double grav)
{
using namespace Opm::AutoDiffGrid;
const int nw = wells.number_of_wells;
const int nperf = wells.well_connpos[nw];
const int dim = dimensions(grid);
V wdp = V::Zero(nperf,1);
assert(wdp.size() == rho.size());
// Main loop, iterate over all perforations,
// using the following formula:
// wdp(perf) = g*(perf_z - well_ref_z)*rho(perf)
// where the total density rho(perf) is taken to be
// sum_p (rho_p*saturation_p) in the perforation cell.
// [although this is computed on the outside of this function].
for (int w = 0; w < nw; ++w) {
const double ref_depth = wells.depth_ref[w];
for (int j = wells.well_connpos[w]; j < wells.well_connpos[w + 1]; ++j) {
const int cell = wells.well_cells[j];
const double cell_depth = cellCentroid(grid, cell)[dim - 1];
wdp[j] = rho[j]*grav*(cell_depth - ref_depth);
}
}
return wdp;
}
template <class PU>
std::vector<bool>
activePhases(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<bool> active(maxnp, false);
for (int p = 0; p < pu.MaxNumPhases; ++p) {
active[ p ] = pu.phase_used[ p ] != 0;
}
return active;
}
template <class PU>
std::vector<int>
active2Canonical(const PU& pu)
{
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
std::vector<int> act2can(maxnp, -1);
for (int phase = 0; phase < maxnp; ++phase) {
if (pu.phase_used[ phase ]) {
act2can[ pu.phase_pos[ phase ] ] = phase;
}
}
return act2can;
}
} // Anonymous namespace
template<class T>
FullyImplicitBlackoilSolver<T>::
FullyImplicitBlackoilSolver(const parameter::ParameterGroup& param,
const Grid& grid ,
const BlackoilPropsAdInterface& fluid,
const DerivedGeology& geo ,
const RockCompressibility* rock_comp_props,
const Wells& wells,
const NewtonIterationBlackoilInterface& linsolver,
const bool has_disgas,
const bool has_vapoil)
: grid_ (grid)
, fluid_ (fluid)
, geo_ (geo)
, rock_comp_props_(rock_comp_props)
, wells_ (wells)
, linsolver_ (linsolver)
, active_(activePhases(fluid.phaseUsage()))
, canph_ (active2Canonical(fluid.phaseUsage()))
, cells_ (buildAllCells(Opm::AutoDiffGrid::numCells(grid)))
, ops_ (grid)
, wops_ (wells)
, grav_ (gravityOperator(grid_, ops_, geo_))
, has_disgas_(has_disgas)
, has_vapoil_(has_vapoil)
, dp_max_rel_ (1.0e9)
, ds_max_ (0.2)
, drs_max_rel_ (1.0e9)
, relax_type_ (DAMPEN)
, relax_max_ (0.5)
, relax_increment_ (0.1)
, relax_rel_tol_ (0.2)
, max_iter_ (15)
, rq_ (fluid.numPhases())
, phaseCondition_(AutoDiffGrid::numCells(grid))
, residual_ ( { std::vector<ADB>(fluid.numPhases(), ADB::null()),
ADB::null(),
ADB::null() } )
{
dp_max_rel_ = param.getDefault("dp_max_rel", dp_max_rel_);
ds_max_ = param.getDefault("ds_max", ds_max_);
drs_max_rel_ = param.getDefault("drs_max_rel", drs_max_rel_);
relax_max_ = param.getDefault("relax_max", relax_max_);
max_iter_ = param.getDefault("max_iter", max_iter_);
std::string relaxation_type = param.getDefault("relax_type", std::string("dampen"));
if (relaxation_type == "dampen") {
relax_type_ = DAMPEN;
} else if (relaxation_type == "sor") {
relax_type_ = SOR;
} else {
OPM_THROW(std::runtime_error, "Unknown Relaxtion Type " << relaxation_type);
}
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::
step(const double dt,
BlackoilState& x ,
WellStateFullyImplicitBlackoil& xw)
{
const V pvdt = geo_.poreVolume() / dt;
if (active_[Gas]) { updatePrimalVariableFromState(x); }
{
const SolutionState state = constantState(x, xw);
computeAccum(state, 0);
computeWellConnectionPressures(state, xw);
}
std::vector<std::vector<double>> residual_history;
assemble(pvdt, x, xw);
bool converged = false;
double omega = 1.;
const double r0 = residualNorm();
residual_history.push_back(residuals());
converged = getConvergence(dt);
int it = 0;
std::cout << "\nIteration Residual\n"
<< std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r0 << std::endl;
const int sizeNonLinear = residual_.sizeNonLinear();
V dxOld = V::Zero(sizeNonLinear);
bool isOscillate = false;
bool isStagnate = false;
const enum RelaxType relaxtype = relaxType();
while ((!converged) && (it < maxIter())) {
V dx = solveJacobianSystem();
detectNewtonOscillations(residual_history, it, relaxRelTol(), isOscillate, isStagnate);
if (isOscillate) {
omega -= relaxIncrement();
omega = std::max(omega, relaxMax());
std::cout << " Oscillating behavior detected: Relaxation set to " << omega << std::endl;
}
stablizeNewton(dx, dxOld, omega, relaxtype);
updateState(dx, x, xw);
assemble(pvdt, x, xw);
const double r = residualNorm();
residual_history.push_back(residuals());
converged = getConvergence(dt);
it += 1;
std::cout << std::setw(9) << it << std::setprecision(9)
<< std::setw(18) << r << std::endl;
}
if (!converged) {
std::cerr << "Failed to compute converged solution in " << it << " iterations. Ignoring!\n";
// OPM_THROW(std::runtime_error, "Failed to compute converged solution in " << it << " iterations.");
}
}
template<class T>
FullyImplicitBlackoilSolver<T>::ReservoirResidualQuant::ReservoirResidualQuant()
: accum(2, ADB::null())
, mflux( ADB::null())
, b ( ADB::null())
, head ( ADB::null())
, mob ( ADB::null())
{
}
template<class T>
FullyImplicitBlackoilSolver<T>::SolutionState::SolutionState(const int np)
: pressure ( ADB::null())
, saturation(np, ADB::null())
, rs ( ADB::null())
, rv ( ADB::null())
, qs ( ADB::null())
, bhp ( ADB::null())
{
}
template<class T>
FullyImplicitBlackoilSolver<T>::
WellOps::WellOps(const Wells& wells)
: w2p(wells.well_connpos[ wells.number_of_wells ],
wells.number_of_wells)
, p2w(wells.number_of_wells,
wells.well_connpos[ wells.number_of_wells ])
{
const int nw = wells.number_of_wells;
const int* const wpos = wells.well_connpos;
typedef Eigen::Triplet<double> Tri;
std::vector<Tri> scatter, gather;
scatter.reserve(wpos[nw]);
gather .reserve(wpos[nw]);
for (int w = 0, i = 0; w < nw; ++w) {
for (; i < wpos[ w + 1 ]; ++i) {
scatter.push_back(Tri(i, w, 1.0));
gather .push_back(Tri(w, i, 1.0));
}
}
w2p.setFromTriplets(scatter.begin(), scatter.end());
p2w.setFromTriplets(gather .begin(), gather .end());
}
template<class T>
typename FullyImplicitBlackoilSolver<T>::SolutionState
FullyImplicitBlackoilSolver<T>::constantState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw)
{
auto state = variableState(x, xw);
// HACK: throw away the derivatives. this may not be the most
// performant way to do things, but it will make the state
// automatically consistent with variableState() (and doing
// things automatically is all the rage in this module ;)
state.pressure = ADB::constant(state.pressure.value());
state.rs = ADB::constant(state.rs.value());
state.rv = ADB::constant(state.rv.value());
for (int phaseIdx= 0; phaseIdx < x.numPhases(); ++ phaseIdx)
state.saturation[phaseIdx] = ADB::constant(state.saturation[phaseIdx].value());
state.qs = ADB::constant(state.qs.value());
state.bhp = ADB::constant(state.bhp.value());
return state;
}
template<class T>
typename FullyImplicitBlackoilSolver<T>::SolutionState
FullyImplicitBlackoilSolver<T>::variableState(const BlackoilState& x,
const WellStateFullyImplicitBlackoil& xw)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = x.numPhases();
std::vector<V> vars0;
// p, Sw and Rs, Rv or Sg is used as primary depending on solution conditions
vars0.reserve(np + 1);
// Initial pressure.
assert (not x.pressure().empty());
const V p = Eigen::Map<const V>(& x.pressure()[0], nc, 1);
vars0.push_back(p);
// Initial saturation.
assert (not x.saturation().empty());
const DataBlock s = Eigen::Map<const DataBlock>(& x.saturation()[0], nc, np);
const Opm::PhaseUsage pu = fluid_.phaseUsage();
// We do not handle a Water/Gas situation correctly, guard against it.
assert (active_[ Oil]);
if (active_[ Water ]) {
const V sw = s.col(pu.phase_pos[ Water ]);
vars0.push_back(sw);
}
// store cell status in vectors
V isRs = V::Zero(nc,1);
V isRv = V::Zero(nc,1);
V isSg = V::Zero(nc,1);
if (active_[ Gas ]){
for (int c = 0; c < nc ; c++ ) {
if ( primalVariable_[c] == PrimalVariables::RS ) {
isRs[c] = 1;
}
else if ( primalVariable_[c] == PrimalVariables::RV ) {
isRv[c] = 1;
}
else {
isSg[c] = 1;
}
}
// define new primary variable xvar depending on solution condition
V xvar(nc);
const V sg = s.col(pu.phase_pos[ Gas ]);
const V rs = Eigen::Map<const V>(& x.gasoilratio()[0], x.gasoilratio().size());
const V rv = Eigen::Map<const V>(& x.rv()[0], x.rv().size());
xvar = isRs*rs + isRv*rv + isSg*sg;
vars0.push_back(xvar);
}
// Initial well rates.
assert (not xw.wellRates().empty());
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
const int nw = wells_.number_of_wells;
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(& xw.wellRates()[0], nw, np).transpose();
const V qs = Eigen::Map<const V>(wrates.data(), nw*np);
vars0.push_back(qs);
// Initial well bottom-hole pressure.
assert (not xw.bhp().empty());
const V bhp = Eigen::Map<const V>(& xw.bhp()[0], xw.bhp().size());
vars0.push_back(bhp);
std::vector<ADB> vars = ADB::variables(vars0);
SolutionState state(np);
// Pressure.
int nextvar = 0;
state.pressure = vars[ nextvar++ ];
// Saturations
const std::vector<int>& bpat = vars[0].blockPattern();
{
ADB so = ADB::constant(V::Ones(nc, 1), bpat);
if (active_[ Water ]) {
ADB& sw = vars[ nextvar++ ];
state.saturation[pu.phase_pos[ Water ]] = sw;
so = so - sw;
}
if (active_[ Gas]) {
// Define Sg Rs and Rv in terms of xvar.
ADB rsSat = fluidRsSat(state.pressure, cells_);
ADB rvSat = fluidRvSat(state.pressure, cells_);
ADB xvar = vars[ nextvar++ ];
ADB sg = isSg*xvar + isRv* so;
state.saturation[ pu.phase_pos[ Gas ] ] = sg;
so = so - sg;
if (has_disgas_) {
state.rs = (1-isRs) * rsSat + isRs*xvar;
} else {
state.rs = rsSat;
}
if (has_vapoil_) {
state.rv = (1-isRv) * rvSat + isRv*xvar;
} else {
state.rv = rvSat;
}
}
if (active_[ Oil ]) {
// Note that so is never a primary variable.
state.saturation[ pu.phase_pos[ Oil ] ] = so;
}
}
// Qs.
state.qs = vars[ nextvar++ ];
// Bhp.
state.bhp = vars[ nextvar++ ];
assert(nextvar == int(vars.size()));
return state;
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::computeAccum(const SolutionState& state,
const int aix )
{
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB& press = state.pressure;
const std::vector<ADB>& sat = state.saturation;
const ADB& rs = state.rs;
const ADB& rv = state.rv;
const std::vector<PhasePresence> cond = phaseCondition();
const ADB pv_mult = poroMult(press);
const int maxnp = Opm::BlackoilPhases::MaxNumPhases;
for (int phase = 0; phase < maxnp; ++phase) {
if (active_[ phase ]) {
const int pos = pu.phase_pos[ phase ];
rq_[pos].b = fluidReciprocFVF(phase, press, rs, rv, cond, cells_);
rq_[pos].accum[aix] = pv_mult * rq_[pos].b * sat[pos];
// DUMP(rq_[pos].b);
// DUMP(rq_[pos].accum[aix]);
}
}
if (active_[ Oil ] && active_[ Gas ]) {
// Account for gas dissolved in oil and vaporized oil
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
rq_[pg].accum[aix] += state.rs * rq_[po].accum[aix];
rq_[po].accum[aix] += state.rv * rq_[pg].accum[aix];
//DUMP(rq_[pg].accum[aix]);
}
}
template<class T>
void FullyImplicitBlackoilSolver<T>::computeWellConnectionPressures(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw)
{
using namespace Opm::AutoDiffGrid;
// 1. Compute properties required by computeConnectionPressureDelta().
// Note that some of the complexity of this part is due to the function
// taking std::vector<double> arguments, and not Eigen objects.
const int nperf = wells_.well_connpos[wells_.number_of_wells];
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
// Compute b, rsmax, rvmax values for perforations.
const ADB perf_press = subset(state.pressure, well_cells);
std::vector<PhasePresence> perf_cond(nperf);
const std::vector<PhasePresence>& pc = phaseCondition();
for (int perf = 0; perf < nperf; ++perf) {
perf_cond[perf] = pc[well_cells[perf]];
}
const PhaseUsage& pu = fluid_.phaseUsage();
DataBlock b(nperf, pu.num_phases);
std::vector<double> rssat_perf(nperf, 0.0);
std::vector<double> rvsat_perf(nperf, 0.0);
if (pu.phase_used[BlackoilPhases::Aqua]) {
const ADB bw = fluid_.bWat(perf_press, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Aqua]) = bw.value();
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
const ADB perf_rs = subset(state.rs, well_cells);
const ADB bo = fluid_.bOil(perf_press, perf_rs, perf_cond, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Liquid]) = bo.value();
const V rssat = fluidRsSat(perf_press.value(), well_cells);
rssat_perf.assign(rssat.data(), rssat.data() + nperf);
}
if (pu.phase_used[BlackoilPhases::Vapour]) {
const ADB perf_rv = subset(state.rv, well_cells);
const ADB bg = fluid_.bGas(perf_press, perf_rv, perf_cond, well_cells);
b.col(pu.phase_pos[BlackoilPhases::Vapour]) = bg.value();
const V rvsat = fluidRvSat(perf_press.value(), well_cells);
rvsat_perf.assign(rvsat.data(), rvsat.data() + nperf);
}
// b is row major, so can just copy data.
std::vector<double> b_perf(b.data(), b.data() + nperf * pu.num_phases);
// Extract well connection depths.
const V depth = cellCentroidsZ(grid_);
const V pdepth = subset(depth, well_cells);
std::vector<double> perf_depth(pdepth.data(), pdepth.data() + nperf);
// Surface density.
std::vector<double> surf_dens(fluid_.surfaceDensity(), fluid_.surfaceDensity() + pu.num_phases);
// Gravity
double grav = 0.0;
const double* g = geo_.gravity();
const int dim = dimensions(grid_);
if (g) {
// Guard against gravity in anything but last dimension.
for (int dd = 0; dd < dim - 1; ++dd) {
assert(g[dd] == 0.0);
}
grav = g[dim - 1];
}
// 2. Compute pressure deltas, and store the results.
std::vector<double> cdp = WellDensitySegmented
::computeConnectionPressureDelta(wells_, xw, fluid_.phaseUsage(),
b_perf, rssat_perf, rvsat_perf, perf_depth,
surf_dens, grav);
well_perforation_pressure_diffs_ = Eigen::Map<const V>(cdp.data(), nperf);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::
assemble(const V& pvdt,
const BlackoilState& x ,
WellStateFullyImplicitBlackoil& xw )
{
using namespace Opm::AutoDiffGrid;
// Create the primary variables.
SolutionState state = variableState(x, xw);
// -------- Mass balance equations --------
// Compute b_p and the accumulation term b_p*s_p for each phase,
// except gas. For gas, we compute b_g*s_g + Rs*b_o*s_o.
// These quantities are stored in rq_[phase].accum[1].
// The corresponding accumulation terms from the start of
// the timestep (b^0_p*s^0_p etc.) were already computed
// in step() and stored in rq_[phase].accum[0].
computeAccum(state, 1);
// Set up the common parts of the mass balance equations
// for each active phase.
const V transi = subset(geo_.transmissibility(), ops_.internal_faces);
const std::vector<ADB> kr = computeRelPerm(state);
const std::vector<ADB> pressures = computePressures(state);
for (int phaseIdx = 0; phaseIdx < fluid_.numPhases(); ++phaseIdx) {
computeMassFlux(phaseIdx, transi, kr[canph_[phaseIdx]], pressures[canph_[phaseIdx]], state);
// std::cout << "===== kr[" << phase << "] = \n" << std::endl;
// std::cout << kr[phase];
// std::cout << "===== rq_[" << phase << "].mflux = \n" << std::endl;
// std::cout << rq_[phase].mflux;
residual_.material_balance_eq[ phaseIdx ] =
pvdt*(rq_[phaseIdx].accum[1] - rq_[phaseIdx].accum[0])
+ ops_.div*rq_[phaseIdx].mflux;
// DUMP(ops_.div*rq_[phase].mflux);
// DUMP(residual_.material_balance_eq[phase]);
}
// -------- Extra (optional) rs and rv contributions to the mass balance equations --------
// Add the extra (flux) terms to the mass balance equations
// From gas dissolved in the oil phase (rs) and oil vaporized in the gas phase (rv)
// The extra terms in the accumulation part of the equation are already handled.
if (active_[ Oil ] && active_[ Gas ]) {
const int po = fluid_.phaseUsage().phase_pos[ Oil ];
const UpwindSelector<double> upwindOil(grid_, ops_,
rq_[po].head.value());
const ADB rs_face = upwindOil.select(state.rs);
residual_.material_balance_eq[ Gas ] += ops_.div * (rs_face * rq_[po].mflux);
const int pg = fluid_.phaseUsage().phase_pos[ Gas ];
const UpwindSelector<double> upwindGas(grid_, ops_,
rq_[pg].head.value());
const ADB rv_face = upwindGas.select(state.rv);
residual_.material_balance_eq[ Oil ] += ops_.div * (rv_face * rq_[pg].mflux);
// DUMP(residual_.material_balance_eq[ Gas ]);
}
// Note: updateWellControls() can change all its arguments if
// a well control is switched.
updateWellControls(state.bhp, state.qs, xw);
V aliveWells;
addWellEq(state, xw, aliveWells);
addWellControlEq(state, xw, aliveWells);
}
template <class T>
void FullyImplicitBlackoilSolver<T>::addWellEq(const SolutionState& state,
WellStateFullyImplicitBlackoil& xw,
V& aliveWells)
{
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const int np = wells_.number_of_phases;
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
V Tw = Eigen::Map<const V>(wells_.WI, nperf);
const std::vector<int> well_cells(wells_.well_cells, wells_.well_cells + nperf);
// pressure diffs computed already (once per step, not changing per iteration)
const V& cdp = well_perforation_pressure_diffs_;
// Extract variables for perforation cell pressures
// and corresponding perforation well pressures.
const ADB p_perfcell = subset(state.pressure, well_cells);
// DUMPVAL(p_perfcell);
// DUMPVAL(state.bhp);
// DUMPVAL(ADB::constant(cdp));
// Pressure drawdown (also used to determine direction of flow)
const ADB drawdown = p_perfcell - (wops_.w2p * state.bhp + cdp);
// current injecting connections
auto connInjInx = drawdown.value() < 0;
// injector == 1, producer == 0
V isInj = V::Zero(nw);
for (int w = 0; w < nw; ++w) {
if (wells_.type[w] == INJECTOR) {
isInj[w] = 1;
}
}
// // A cross-flow connection is defined as a connection which has opposite
// // flow-direction to the well total flow
// V isInjPerf = (wops_.w2p * isInj);
// auto crossFlowConns = (connInjInx != isInjPerf);
// bool allowCrossFlow = true;
// if (not allowCrossFlow) {
// auto closedConns = crossFlowConns;
// for (int c = 0; c < nperf; ++c) {
// if (closedConns[c]) {
// Tw[c] = 0;
// }
// }
// connInjInx = !closedConns;
// }
// TODO: not allow for crossflow
V isInjInx = V::Zero(nperf);
V isNotInjInx = V::Zero(nperf);
for (int c = 0; c < nperf; ++c){
if (connInjInx[c])
isInjInx[c] = 1;
else
isNotInjInx[c] = 1;
}
// HANDLE FLOW INTO WELLBORE
// compute phase volumerates standard conditions
std::vector<ADB> cq_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const ADB& wellcell_mob = subset ( rq_[phase].mob, well_cells);
const ADB cq_p = -(isNotInjInx * Tw) * (wellcell_mob * drawdown);
cq_ps[phase] = subset(rq_[phase].b,well_cells) * cq_p;
}
if (active_[Oil] && active_[Gas]) {
const int oilpos = pu.phase_pos[Oil];
const int gaspos = pu.phase_pos[Gas];
ADB cq_psOil = cq_ps[oilpos];
ADB cq_psGas = cq_ps[gaspos];
cq_ps[gaspos] += subset(state.rs,well_cells) * cq_psOil;
cq_ps[oilpos] += subset(state.rv,well_cells) * cq_psGas;
}
// phase rates at std. condtions
std::vector<ADB> q_ps(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
q_ps[phase] = wops_.p2w * cq_ps[phase];
}
// total rates at std
ADB qt_s = ADB::constant(V::Zero(nw), state.bhp.blockPattern());
for (int phase = 0; phase < np; ++phase) {
qt_s += subset(state.qs, Span(nw, 1, phase*nw));
}
// compute avg. and total wellbore phase volumetric rates at std. conds
const DataBlock compi = Eigen::Map<const DataBlock>(wells_.comp_frac, nw, np);
std::vector<ADB> wbq(np, ADB::null());
ADB wbqt = ADB::constant(V::Zero(nw), state.pressure.blockPattern());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
wbq[phase] = (isInj * compi.col(pos)) * qt_s - q_ps[phase];
wbqt += wbq[phase];
}
// DUMPVAL(wbqt);
// check for dead wells
aliveWells = V::Constant(nw, 1.0);
for (int w = 0; w < nw; ++w) {
if (wbqt.value()[w] == 0) {
aliveWells[w] = 0.0;
}
}
// compute wellbore mixture at std conds
Selector<double> notDeadWells_selector(wbqt.value(), Selector<double>::Zero);
std::vector<ADB> mix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
const int pos = pu.phase_pos[phase];
mix_s[phase] = notDeadWells_selector.select(ADB::constant(compi.col(pos)), wbq[phase]/wbqt);
}
// HANDLE FLOW OUT FROM WELLBORE
// Total mobilities
ADB mt = subset(rq_[0].mob,well_cells);
for (int phase = 1; phase < np; ++phase) {
mt += subset(rq_[phase].mob,well_cells);
}
// DUMPVAL(ADB::constant(isInjInx));
// DUMPVAL(ADB::constant(Tw));
// DUMPVAL(mt);
// DUMPVAL(drawdown);
// injection connections total volumerates
ADB cqt_i = -(isInjInx * Tw) * (mt * drawdown);
// compute volume ratio between connection at standard conditions
ADB volRat = ADB::constant(V::Zero(nperf), state.pressure.blockPattern());
std::vector<ADB> cmix_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
cmix_s[phase] = wops_.w2p * mix_s[phase];
}
ADB well_rv = subset(state.rv,well_cells);
ADB well_rs = subset(state.rs,well_cells);
ADB d = V::Constant(nperf,1.0) - well_rv * well_rs;
for (int phase = 0; phase < np; ++phase) {
ADB tmp = cmix_s[phase];
if (phase == Oil && active_[Gas]) {
const int gaspos = pu.phase_pos[Gas];
tmp = tmp - subset(state.rv,well_cells) * cmix_s[gaspos] / d;
}
if (phase == Gas && active_[Oil]) {
const int oilpos = pu.phase_pos[Oil];
tmp = tmp - subset(state.rs,well_cells) * cmix_s[oilpos] / d;
}
volRat += tmp / subset(rq_[phase].b,well_cells);
}
// DUMPVAL(cqt_i);
// DUMPVAL(volRat);
// injecting connections total volumerates at std cond
ADB cqt_is = cqt_i/volRat;
// connection phase volumerates at std cond
std::vector<ADB> cq_s(np, ADB::null());
for (int phase = 0; phase < np; ++phase) {
cq_s[phase] = cq_ps[phase] + (wops_.w2p * mix_s[phase])*cqt_is;
}
// DUMPVAL(mix_s[2]);
// DUMPVAL(cq_ps[2]);
// Add well contributions to mass balance equations
for (int phase = 0; phase < np; ++phase) {
residual_.material_balance_eq[phase] -= superset(cq_s[phase],well_cells,nc);
}
// Add WELL EQUATIONS
ADB qs = state.qs;
for (int phase = 0; phase < np; ++phase) {
qs -= superset(wops_.p2w * cq_s[phase], Span(nw, 1, phase*nw), nw*np);
}
V cq = superset(cq_s[0].value(), Span(nperf, np, 0), nperf*np);
for (int phase = 1; phase < np; ++phase) {
cq += superset(cq_s[phase].value(), Span(nperf, np, phase), nperf*np);
}
std::vector<double> cq_d(cq.data(), cq.data() + nperf*np);
xw.perfPhaseRates() = cq_d;
residual_.well_flux_eq = qs;
}
namespace
{
double rateToCompare(const ADB& well_phase_flow_rate,
const int well,
const int num_phases,
const double* distr)
{
const int num_wells = well_phase_flow_rate.size() / num_phases;
double rate = 0.0;
for (int phase = 0; phase < num_phases; ++phase) {
// Important: well_phase_flow_rate is ordered with all rates for first
// phase coming first, then all for second phase etc.
rate += well_phase_flow_rate.value()[well + phase*num_wells] * distr[phase];
}
return rate;
}
bool constraintBroken(const ADB& bhp,
const ADB& well_phase_flow_rate,
const int well,
const int num_phases,
const WellType& well_type,
const WellControls* wc,
const int ctrl_index)
{
const WellControlType ctrl_type = well_controls_iget_type(wc, ctrl_index);
const double target = well_controls_iget_target(wc, ctrl_index);
const double* distr = well_controls_iget_distr(wc, ctrl_index);
switch (well_type) {
case INJECTOR:
switch (ctrl_type) {
case BHP:
return bhp.value()[well] > target;
case SURFACE_RATE:
return rateToCompare(well_phase_flow_rate, well, num_phases, distr) > target;
case RESERVOIR_RATE:
// Intentional fall-through.
default:
OPM_THROW(std::logic_error, "Can only handle BHP and SURFACE_RATE controls.");
}
break;
case PRODUCER:
switch (ctrl_type) {
case BHP:
return bhp.value()[well] < target;
case SURFACE_RATE:
// Note that the rates compared below are negative,
// so breaking the constraints means: too high flow rate
// (as for injection).
return rateToCompare(well_phase_flow_rate, well, num_phases, distr) < target;
case RESERVOIR_RATE:
// Intentional fall-through.
default:
OPM_THROW(std::logic_error, "Can only handle BHP and SURFACE_RATE controls.");
}
break;
default:
OPM_THROW(std::logic_error, "Can only handle INJECTOR and PRODUCER wells.");
}
}
} // anonymous namespace
template<class T>
void FullyImplicitBlackoilSolver<T>::updateWellControls(ADB& bhp,
ADB& well_phase_flow_rate,
WellStateFullyImplicitBlackoil& xw) const
{
std::string modestring[3] = { "BHP", "RESERVOIR_RATE", "SURFACE_RATE" };
// Find, for each well, if any constraints are broken. If so,
// switch control to first broken constraint.
const int np = wells_.number_of_phases;
const int nw = wells_.number_of_wells;
bool bhp_changed = false;
bool rates_changed = false;
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells_.ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
// Loop over all controls except the current one, and also
// skip any RESERVOIR_RATE controls, since we cannot
// handle those.
const int nwc = well_controls_get_num(wc);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (ctrl_index == current) {
// This is the currently used control, so it is
// used as an equation. So this is not used as an
// inequality constraint, and therefore skipped.
continue;
}
if (well_controls_iget_type(wc, ctrl_index) == RESERVOIR_RATE) {
// We cannot handle this yet.
#ifdef OPM_VERBOSE
std::cout << "Warning: a RESERVOIR_RATE well control exists for well "
<< wells_.name[w] << ", but will never be checked." << std::endl;
#endif
continue;
}
if (constraintBroken(bhp, well_phase_flow_rate, w, np, wells_.type[w], wc, ctrl_index)) {
// ctrl_index will be the index of the broken constraint after the loop.
break;
}
}
if (ctrl_index != nwc) {
// Constraint number ctrl_index was broken, switch to it.
std::cout << "Switching control mode for well " << wells_.name[w]
<< " from " << modestring[well_controls_iget_type(wc, current)]
<< " to " << modestring[well_controls_iget_type(wc, ctrl_index)] << std::endl;
xw.currentControls()[w] = ctrl_index;
// Also updating well state and primary variables.
// We can only be switching to BHP and SURFACE_RATE
// controls since we do not support RESERVOIR_RATE.
const double target = well_controls_iget_target(wc, ctrl_index);
const double* distr = well_controls_iget_distr(wc, ctrl_index);
switch (well_controls_iget_type(wc, ctrl_index)) {
case BHP:
xw.bhp()[w] = target;
bhp_changed = true;
break;
case SURFACE_RATE:
for (int phase = 0; phase < np; ++phase) {
if (distr[phase] > 0.0) {
xw.wellRates()[np*w + phase] = target * distr[phase];
}
}
rates_changed = true;
break;
default:
OPM_THROW(std::logic_error, "Programmer error: should not have switched "
"to anything but BHP or SURFACE_RATE.");
}
}
}
// Update primary variables, if necessary.
if (bhp_changed) {
ADB::V new_bhp = Eigen::Map<ADB::V>(xw.bhp().data(), nw);
bhp = ADB::function(new_bhp, bhp.derivative());
}
if (rates_changed) {
// Need to reshuffle well rates, from phase running fastest
// to wells running fastest.
// The transpose() below switches the ordering.
const DataBlock wrates = Eigen::Map<const DataBlock>(xw.wellRates().data(), nw, np).transpose();
const ADB::V new_qs = Eigen::Map<const V>(wrates.data(), nw*np);
well_phase_flow_rate = ADB::function(new_qs, well_phase_flow_rate.derivative());
}
}
template<class T>
void FullyImplicitBlackoilSolver<T>::addWellControlEq(const SolutionState& state,
const WellStateFullyImplicitBlackoil& xw,
const V& aliveWells)
{
// Handling BHP and SURFACE_RATE wells.
const int np = wells_.number_of_phases;
const int nw = wells_.number_of_wells;
V bhp_targets(nw);
V rate_targets(nw);
M rate_distr(nw, np*nw);
for (int w = 0; w < nw; ++w) {
const WellControls* wc = wells_.ctrls[w];
// The current control in the well state overrides
// the current control set in the Wells struct, which
// is instead treated as a default.
const int current = xw.currentControls()[w];
if (well_controls_iget_type(wc, current) == BHP) {
bhp_targets[w] = well_controls_iget_target(wc, current);
rate_targets[w] = -1e100;
} else if (well_controls_iget_type(wc, current) == SURFACE_RATE) {
bhp_targets[w] = -1e100;
rate_targets[w] = well_controls_iget_target(wc, current);
{
const double * distr = well_controls_iget_distr(wc, current);
for (int phase = 0; phase < np; ++phase) {
rate_distr.insert(w, phase*nw + w) = distr[phase];
}
}
} else {
OPM_THROW(std::runtime_error, "Can only handle BHP and SURFACE_RATE type controls.");
}
}
const ADB bhp_residual = state.bhp - bhp_targets;
const ADB rate_residual = rate_distr * state.qs - rate_targets;
// Choose bhp residual for positive bhp targets.
Selector<double> bhp_selector(bhp_targets);
residual_.well_eq = bhp_selector.select(bhp_residual, rate_residual);
// For wells that are dead (not flowing), and therefore not communicating
// with the reservoir, we set the equation to be equal to the well's total
// flow. This will be a solution only if the target rate is also zero.
M rate_summer(nw, np*nw);
for (int w = 0; w < nw; ++w) {
for (int phase = 0; phase < np; ++phase) {
rate_summer.insert(w, phase*nw + w) = 1.0;
}
}
Selector<double> alive_selector(aliveWells, Selector<double>::NotEqualZero);
residual_.well_eq = alive_selector.select(residual_.well_eq, rate_summer * state.qs);
// DUMP(residual_.well_eq);
}
template<class T>
V FullyImplicitBlackoilSolver<T>::solveJacobianSystem() const
{
return linsolver_.computeNewtonIncrement(residual_);
}
namespace {
struct Chop01 {
double operator()(double x) const { return std::max(std::min(x, 1.0), 0.0); }
};
}
template<class T>
void FullyImplicitBlackoilSolver<T>::updateState(const V& dx,
BlackoilState& state,
WellStateFullyImplicitBlackoil& well_state)
{
using namespace Opm::AutoDiffGrid;
const int np = fluid_.numPhases();
const int nc = numCells(grid_);
const int nw = wells_.number_of_wells;
const V null;
assert(null.size() == 0);
const V zero = V::Zero(nc);
const V one = V::Constant(nc, 1.0);
// store cell status in vectors
V isRs = V::Zero(nc,1);
V isRv = V::Zero(nc,1);
V isSg = V::Zero(nc,1);
if (active_[Gas]) {
for (int c = 0; c < nc ; c++ ) {
if ( primalVariable_[c] == PrimalVariables::RS ) {
isRs[c] = 1;
}
else if ( primalVariable_[c] == PrimalVariables::RV ) {
isRv[c] = 1;
}
else {
isSg[c] = 1;
}
}
}
// Extract parts of dx corresponding to each part.
const V dp = subset(dx, Span(nc));
int varstart = nc;
const V dsw = active_[Water] ? subset(dx, Span(nc, 1, varstart)) : null;
varstart += dsw.size();
const V dxvar = active_[Gas] ? subset(dx, Span(nc, 1, varstart)): null;
varstart += dxvar.size();
const V dqs = subset(dx, Span(np*nw, 1, varstart));
varstart += dqs.size();
const V dbhp = subset(dx, Span(nw, 1, varstart));
varstart += dbhp.size();
assert(varstart == dx.size());
// Pressure update.
const double dpmaxrel = dpMaxRel();
const V p_old = Eigen::Map<const V>(&state.pressure()[0], nc, 1);
const V absdpmax = dpmaxrel*p_old.abs();
const V dp_limited = sign(dp) * dp.abs().min(absdpmax);
const V p = (p_old - dp_limited).max(zero);
std::copy(&p[0], &p[0] + nc, state.pressure().begin());
// Saturation updates.
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s_old = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
const double dsmax = dsMax();
V so = one;
V sw;
V sg;
{
V maxVal = zero;
V dso = zero;
if (active_[Water]){
maxVal = dsw.abs().max(maxVal);
dso = dso - dsw;
}
V dsg;
if (active_[Gas]){
dsg = isSg * dxvar - isRv * dsw;
maxVal = dsg.abs().max(maxVal);
dso = dso - dsg;
}
maxVal = dso.abs().max(maxVal);
V step = dsmax/maxVal;
step = step.min(1.);
if (active_[Water]) {
const int pos = pu.phase_pos[ Water ];
const V sw_old = s_old.col(pos);
sw = sw_old - step * dsw;
so -= sw;
}
if (active_[Gas]) {
const int pos = pu.phase_pos[ Gas ];
const V sg_old = s_old.col(pos);
sg = sg_old - step * dsg;
so -= sg;
}
}
const double drsmaxrel = drsMaxRel();
const double drvmax = 1e9;//% same as in Mrst
V rs;
if (has_disgas_) {
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
const V drs = isRs * dxvar;
const V drs_limited = sign(drs) * drs.abs().min(rs_old.abs()*drsmaxrel);
rs = rs_old - drs_limited;
}
V rv;
if (has_vapoil_) {
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
const V drv = isRv * dxvar;
const V drv_limited = sign(drv) * drv.abs().min(drvmax);
rv = rv_old - drv_limited;
}
// Appleyard chop process.
const double epsilon = std::sqrt(std::numeric_limits<double>::epsilon());
auto watOnly = sw > (1 - epsilon);
// phase translation sg <-> rs
const V rsSat0 = fluidRsSat(p_old, cells_);
const V rsSat = fluidRsSat(p, cells_);
// reset the phase conditions
std::vector<PhasePresence> cond(nc);
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
if (has_disgas_) {
// The obvious case
auto hasGas = (sg > 0 && isRs == 0);
// keep oil saturated if previous sg is sufficient large:
const int pos = pu.phase_pos[ Gas ];
auto hadGas = (sg < 0 && s_old.col(pos) > epsilon);
// Set oil saturated if previous rs is sufficiently large
const V rs_old = Eigen::Map<const V>(&state.gasoilratio()[0], nc);
auto gasVaporized = ( (rs > rsSat * (1+epsilon) && isRs == 1 ) && (rs_old > rsSat0 * (1-epsilon)) );
auto useSg = watOnly || hasGas || hadGas || gasVaporized;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) { rs[c] = rsSat[c];}
else { primalVariable_[c] = PrimalVariables::RS; }
}
}
// phase transitions so <-> rv
const V rvSat0 = fluidRvSat(p_old, cells_);
const V rvSat = fluidRvSat(p, cells_);
if (has_vapoil_) {
// The obvious case
auto hasOil = (so > 0 && isRv == 0);
// keep oil saturated if previous so is sufficient large:
const int pos = pu.phase_pos[ Oil ];
auto hadOil = (so < 0 && s_old.col(pos) > epsilon );
// Set oil saturated if previous rv is sufficiently large
const V rv_old = Eigen::Map<const V>(&state.rv()[0], nc);
auto oilCondensed = ( (rv > rvSat * (1+epsilon) && isRv == 1) && (rv_old > rvSat0 * (1-epsilon)) );
auto useSg = watOnly || hasOil || hadOil || oilCondensed;
for (int c = 0; c < nc; ++c) {
if (useSg[c]) { rv[c] = rvSat[c]; }
else {primalVariable_[c] = PrimalVariables::RV; }
}
}
auto ixg = sg < 0;
for (int c = 0; c < nc; ++c) {
if (ixg[c]) {
sw[c] = sw[c] / (1-sg[c]);
so[c] = so[c] / (1-sg[c]);
sg[c] = 0;
}
}
auto ixo = so < 0;
for (int c = 0; c < nc; ++c) {
if (ixo[c]) {
sw[c] = sw[c] / (1-so[c]);
sg[c] = sg[c] / (1-so[c]);
so[c] = 0;
}
}
auto ixw = sw < 0;
for (int c = 0; c < nc; ++c) {
if (ixw[c]) {
so[c] = so[c] / (1-sw[c]);
sg[c] = sg[c] / (1-so[c]);
sw[c] = 0;
}
}
// Update saturations
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pu.phase_pos[ Water ]] = sw[c];
}
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pu.phase_pos[ Gas ]] = sg[c];
}
if (active_[ Oil ]) {
const int pos = pu.phase_pos[ Oil ];
for (int c = 0; c < nc; ++c) {
state.saturation()[c*np + pos] = so[c];
}
}
// Rs and Rv updates
if (has_disgas_)
std::copy(&rs[0], &rs[0] + nc, state.gasoilratio().begin());
if (has_vapoil_)
std::copy(&rv[0], &rv[0] + nc, state.rv().begin());
// Qs update.
// Since we need to update the wellrates, that are ordered by wells,
// from dqs which are ordered by phase, the simplest is to compute
// dwr, which is the data from dqs but ordered by wells.
const DataBlock wwr = Eigen::Map<const DataBlock>(dqs.data(), np, nw).transpose();
const V dwr = Eigen::Map<const V>(wwr.data(), nw*np);
const V wr_old = Eigen::Map<const V>(&well_state.wellRates()[0], nw*np);
const V wr = wr_old - dwr;
std::copy(&wr[0], &wr[0] + wr.size(), well_state.wellRates().begin());
// Bhp update.
const V bhp_old = Eigen::Map<const V>(&well_state.bhp()[0], nw, 1);
const V dbhp_limited = sign(dbhp) * dbhp.abs().min(bhp_old.abs()*dpmaxrel);
const V bhp = bhp_old - dbhp_limited;
std::copy(&bhp[0], &bhp[0] + bhp.size(), well_state.bhp().begin());
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computeRelPerm(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
return fluid_.relperm(sw, so, sg, cells_);
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computePressures(const SolutionState& state) const
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nc, 1), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? state.saturation[ pu.phase_pos[ Water ] ]
: null);
const ADB so = (active_[ Oil ]
? state.saturation[ pu.phase_pos[ Oil ] ]
: null);
const ADB sg = (active_[ Gas ]
? state.saturation[ pu.phase_pos[ Gas ] ]
: null);
// convert the pressure offsets to the capillary pressures
std::vector<ADB> pressure = fluid_.capPress(sw, so, sg, cells_);
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
// The reference pressure is always the liquid phase (oil) pressure.
if (phaseIdx == BlackoilPhases::Liquid)
continue;
pressure[phaseIdx] = pressure[phaseIdx] - pressure[BlackoilPhases::Liquid];
}
// Since pcow = po - pw, but pcog = pg - po,
// we have
// pw = po - pcow
// pg = po + pcgo
// This is an unfortunate inconsistency, but a convention we must handle.
for (int phaseIdx = 0; phaseIdx < BlackoilPhases::MaxNumPhases; ++phaseIdx) {
if (phaseIdx == BlackoilPhases::Aqua) {
pressure[phaseIdx] = state.pressure - pressure[phaseIdx];
} else {
pressure[phaseIdx] += state.pressure;
}
}
return pressure;
}
template<class T>
std::vector<ADB>
FullyImplicitBlackoilSolver<T>::computeRelPermWells(const SolutionState& state,
const DataBlock& well_s,
const std::vector<int>& well_cells) const
{
const int nw = wells_.number_of_wells;
const int nperf = wells_.well_connpos[nw];
const std::vector<int>& bpat = state.pressure.blockPattern();
const ADB null = ADB::constant(V::Zero(nperf), bpat);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const ADB sw = (active_[ Water ]
? ADB::constant(well_s.col(pu.phase_pos[ Water ]), bpat)
: null);
const ADB so = (active_[ Oil ]
? ADB::constant(well_s.col(pu.phase_pos[ Oil ]), bpat)
: null);
const ADB sg = (active_[ Gas ]
? ADB::constant(well_s.col(pu.phase_pos[ Gas ]), bpat)
: null);
return fluid_.relperm(sw, so, sg, well_cells);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::computeMassFlux(const int actph ,
const V& transi,
const ADB& kr ,
const ADB& phasePressure,
const SolutionState& state)
{
const int canonicalPhaseIdx = canph_[ actph ];
const std::vector<PhasePresence> cond = phaseCondition();
const ADB tr_mult = transMult(state.pressure);
const ADB mu = fluidViscosity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_);
rq_[ actph ].mob = tr_mult * kr / mu;
const ADB rho = fluidDensity(canonicalPhaseIdx, phasePressure, state.rs, state.rv,cond, cells_);
ADB& head = rq_[ actph ].head;
// compute gravity potensial using the face average as in eclipse and MRST
const ADB rhoavg = ops_.caver * rho;
const ADB dp = ops_.ngrad * phasePressure - geo_.gravity()[2] * (rhoavg * (ops_.ngrad * geo_.z().matrix()));
head = transi*dp;
//head = transi*(ops_.ngrad * phasePressure) + gflux;
UpwindSelector<double> upwind(grid_, ops_, head.value());
const ADB& b = rq_[ actph ].b;
const ADB& mob = rq_[ actph ].mob;
rq_[ actph ].mflux = upwind.select(b * mob) * head;
// DUMP(rq_[ actph ].mob);
// DUMP(rq_[ actph ].mflux);
}
template<class T>
double
FullyImplicitBlackoilSolver<T>::residualNorm() const
{
double globalNorm = 0;
std::vector<ADB>::const_iterator quantityIt = residual_.material_balance_eq.begin();
const std::vector<ADB>::const_iterator endQuantityIt = residual_.material_balance_eq.end();
for (; quantityIt != endQuantityIt; ++quantityIt) {
const double quantityResid = (*quantityIt).value().matrix().norm();
if (!std::isfinite(quantityResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
globalNorm = std::max(globalNorm, quantityResid);
}
globalNorm = std::max(globalNorm, residual_.well_flux_eq.value().matrix().norm());
globalNorm = std::max(globalNorm, residual_.well_eq.value().matrix().norm());
return globalNorm;
}
template<class T>
std::vector<double>
FullyImplicitBlackoilSolver<T>::residuals() const
{
std::vector<double> residual;
std::vector<ADB>::const_iterator massBalanceIt = residual_.material_balance_eq.begin();
const std::vector<ADB>::const_iterator endMassBalanceIt = residual_.material_balance_eq.end();
for (; massBalanceIt != endMassBalanceIt; ++massBalanceIt) {
const double massBalanceResid = (*massBalanceIt).value().matrix().template lpNorm<Eigen::Infinity>();
if (!std::isfinite(massBalanceResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(massBalanceResid);
}
// the following residuals are not used in the oscillation detection now
const double wellFluxResid = residual_.well_flux_eq.value().matrix().template lpNorm<Eigen::Infinity>();
if (!std::isfinite(wellFluxResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(wellFluxResid);
const double wellResid = residual_.well_eq.value().matrix().template lpNorm<Eigen::Infinity>();
if (!std::isfinite(wellResid)) {
OPM_THROW(Opm::NumericalProblem,
"Encountered a non-finite residual");
}
residual.push_back(wellResid);
return residual;
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::detectNewtonOscillations(const std::vector<std::vector<double>>& residual_history,
const int it, const double relaxRelTol,
bool& oscillate, bool& stagnate) const
{
// The detection of oscillation in two primary variable results in the report of the detection
// of oscillation for the solver.
// Only the saturations are used for oscillation detection for the black oil model.
// Stagnate is not used for any treatment here.
if ( it < 2 ) {
oscillate = false;
stagnate = false;
return;
}
stagnate = true;
int oscillatePhase = 0;
for (int phaseIdx= 0; phaseIdx < fluid_.numPhases(); ++ phaseIdx){
if (active_[phaseIdx]) {
double relChange1 = std::fabs((residual_history[it][phaseIdx] - residual_history[it - 2][phaseIdx]) /
residual_history[it][phaseIdx]);
double relChange2 = std::fabs((residual_history[it][phaseIdx] - residual_history[it - 1][phaseIdx]) /
residual_history[it][phaseIdx]);
oscillatePhase += (relChange1 < relaxRelTol) && (relChange2 > relaxRelTol);
double relChange3 = std::fabs((residual_history[it - 1][phaseIdx] - residual_history[it - 2][phaseIdx]) /
residual_history[it - 2][phaseIdx]);
if (relChange3 > 1.e-3) {
stagnate = false;
}
}
}
oscillate = (oscillatePhase > 1);
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::stablizeNewton(V& dx, V& dxOld, const double omega,
const RelaxType relax_type) const
{
// The dxOld is updated with dx.
// If omega is equal to 1., no relaxtion will be appiled.
const V tempDxOld = dxOld;
dxOld = dx;
switch (relax_type) {
case DAMPEN:
if (omega == 1.) {
return;
}
dx = dx*omega;
return;
case SOR:
if (omega == 1.) {
return;
}
dx = dx*omega + (1.-omega)*tempDxOld;
return;
default:
OPM_THROW(std::runtime_error, "Can only handle DAMPEN and SOR relaxation type.");
}
return;
}
template<class T>
bool
FullyImplicitBlackoilSolver<T>::getConvergence(const double dt)
{
const double tol_mb = 1.0e-7;
const double tol_cnv = 1.0e-3;
const int nc = Opm::AutoDiffGrid::numCells(grid_);
const Opm::PhaseUsage& pu = fluid_.phaseUsage();
const V pv = geo_.poreVolume();
const double pvSum = pv.sum();
const std::vector<PhasePresence> cond = phaseCondition();
double CNVW = 0.;
double CNVO = 0.;
double CNVG = 0.;
double RW_sum = 0.;
double RO_sum = 0.;
double RG_sum = 0.;
double BW_avg = 0.;
double BO_avg = 0.;
double BG_avg = 0.;
if (active_[Water]) {
const int pos = pu.phase_pos[Water];
const ADB& tempBW = rq_[pos].b;
V BW = 1./tempBW.value();
V RW = residual_.material_balance_eq[Water].value();
BW_avg = BW.sum()/nc;
const V tempV = RW.abs()/pv;
CNVW = BW_avg * dt * tempV.maxCoeff();
RW_sum = RW.sum();
}
if (active_[Oil]) {
// Omit the disgas here. We should add it.
const int pos = pu.phase_pos[Oil];
const ADB& tempBO = rq_[pos].b;
V BO = 1./tempBO.value();
V RO = residual_.material_balance_eq[Oil].value();
BO_avg = BO.sum()/nc;
const V tempV = RO.abs()/pv;
CNVO = BO_avg * dt * tempV.maxCoeff();
RO_sum = RO.sum();
}
if (active_[Gas]) {
// Omit the vapoil here. We should add it.
const int pos = pu.phase_pos[Gas];
const ADB& tempBG = rq_[pos].b;
V BG = 1./tempBG.value();
V RG = residual_.material_balance_eq[Gas].value();
BG_avg = BG.sum()/nc;
const V tempV = RG.abs()/pv;
CNVG = BG_avg * dt * tempV.maxCoeff();
RG_sum = RG.sum();
}
double tempValue = tol_mb * pvSum /dt;
bool converged_MB = (fabs(BW_avg*RW_sum) < tempValue)
&& (fabs(BO_avg*RO_sum) < tempValue)
&& (fabs(BG_avg*RG_sum) < tempValue);
bool converged_CNV = (CNVW < tol_cnv) && (CNVO < tol_cnv) && (CNVG < tol_cnv);
double residualWellFlux = residual_.well_flux_eq.value().matrix().template lpNorm<Eigen::Infinity>();
double residualWell = residual_.well_eq.value().matrix().template lpNorm<Eigen::Infinity>();
bool converged_Well = (residualWellFlux < 1./Opm::unit::day) && (residualWell < Opm::unit::barsa);
bool converged = converged_MB && converged_CNV && converged_Well;
#ifdef OPM_VERBOSE
std::cout << " CNVW " << CNVW << " CNVO " << CNVO << " CNVG " << CNVG << std::endl;
std::cout << " converged_MB " << converged_MB << " converged_CNV " << converged_CNV
<< " converged_Well " << converged_Well << " converged " << converged << std::endl;
#endif
return converged;
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidViscosity(const int phase,
const ADB& p ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.muWat(p, cells);
case Oil: {
return fluid_.muOil(p, rs, cond, cells);
}
case Gas:
return fluid_.muGas(p, rv, cond, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidReciprocFVF(const int phase,
const ADB& p ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
switch (phase) {
case Water:
return fluid_.bWat(p, cells);
case Oil: {
return fluid_.bOil(p, rs, cond, cells);
}
case Gas:
return fluid_.bGas(p, rv, cond, cells);
default:
OPM_THROW(std::runtime_error, "Unknown phase index " << phase);
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidDensity(const int phase,
const ADB& p ,
const ADB& rs ,
const ADB& rv ,
const std::vector<PhasePresence>& cond,
const std::vector<int>& cells) const
{
const double* rhos = fluid_.surfaceDensity();
ADB b = fluidReciprocFVF(phase, p, rs, rv, cond, cells);
ADB rho = V::Constant(p.size(), 1, rhos[phase]) * b;
if (phase == Oil && active_[Gas]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Gas]) * rs * b;
}
if (phase == Gas && active_[Oil]) {
// It is correct to index into rhos with canonical phase indices.
rho += V::Constant(p.size(), 1, rhos[Oil]) * rv * b;
}
return rho;
}
template<class T>
V
FullyImplicitBlackoilSolver<T>::fluidRsSat(const V& p,
const std::vector<int>& cells) const
{
return fluid_.rsSat(p, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidRsSat(const ADB& p,
const std::vector<int>& cells) const
{
return fluid_.rsSat(p, cells);
}
template<class T>
V
FullyImplicitBlackoilSolver<T>::fluidRvSat(const V& p,
const std::vector<int>& cells) const
{
return fluid_.rvSat(p, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::fluidRvSat(const ADB& p,
const std::vector<int>& cells) const
{
return fluid_.rvSat(p, cells);
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::poroMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V pm(n);
V dpm(n);
for (int i = 0; i < n; ++i) {
pm[i] = rock_comp_props_->poroMult(p.value()[i]);
dpm[i] = rock_comp_props_->poroMultDeriv(p.value()[i]);
}
ADB::M dpm_diag = spdiag(dpm);
const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dpm_diag * p.derivative()[block];
}
return ADB::function(pm, jacs);
} else {
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
}
}
template<class T>
ADB
FullyImplicitBlackoilSolver<T>::transMult(const ADB& p) const
{
const int n = p.size();
if (rock_comp_props_ && rock_comp_props_->isActive()) {
V tm(n);
V dtm(n);
for (int i = 0; i < n; ++i) {
tm[i] = rock_comp_props_->transMult(p.value()[i]);
dtm[i] = rock_comp_props_->transMultDeriv(p.value()[i]);
}
ADB::M dtm_diag = spdiag(dtm);
const int num_blocks = p.numBlocks();
std::vector<ADB::M> jacs(num_blocks);
for (int block = 0; block < num_blocks; ++block) {
jacs[block] = dtm_diag * p.derivative()[block];
}
return ADB::function(tm, jacs);
} else {
return ADB::constant(V::Constant(n, 1.0), p.blockPattern());
}
}
/*
template<class T>
void
FullyImplicitBlackoilSolver<T>::
classifyCondition(const SolutionState& state,
std::vector<PhasePresence>& cond ) const
{
const PhaseUsage& pu = fluid_.phaseUsage();
if (active_[ Gas ]) {
// Oil/Gas or Water/Oil/Gas system
const int po = pu.phase_pos[ Oil ];
const int pg = pu.phase_pos[ Gas ];
const V& so = state.saturation[ po ].value();
const V& sg = state.saturation[ pg ].value();
cond.resize(sg.size());
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if (so[c] > 0) { cond[c].setFreeOil (); }
if (sg[c] > 0) { cond[c].setFreeGas (); }
if (active_[ Water ]) { cond[c].setFreeWater(); }
}
}
else {
// Water/Oil system
assert (active_[ Water ]);
const int po = pu.phase_pos[ Oil ];
const V& so = state.saturation[ po ].value();
cond.resize(so.size());
for (V::Index c = 0, e = so.size(); c != e; ++c) {
cond[c].setFreeWater();
if (so[c] > 0) { cond[c].setFreeOil(); }
}
}
} */
template<class T>
void
FullyImplicitBlackoilSolver<T>::classifyCondition(const BlackoilState& state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
if (active_[ Gas ]) {
// Oil/Gas or Water/Oil/Gas system
const V so = s.col(pu.phase_pos[ Oil ]);
const V sg = s.col(pu.phase_pos[ Gas ]);
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if (so[c] > 0) { phaseCondition_[c].setFreeOil (); }
if (sg[c] > 0) { phaseCondition_[c].setFreeGas (); }
if (active_[ Water ]) { phaseCondition_[c].setFreeWater(); }
}
}
else {
// Water/Oil system
assert (active_[ Water ]);
const V so = s.col(pu.phase_pos[ Oil ]);
for (V::Index c = 0, e = so.size(); c != e; ++c) {
phaseCondition_[c].setFreeWater();
if (so[c] > 0) { phaseCondition_[c].setFreeOil(); }
}
}
}
template<class T>
void
FullyImplicitBlackoilSolver<T>::updatePrimalVariableFromState(const BlackoilState& state)
{
using namespace Opm::AutoDiffGrid;
const int nc = numCells(grid_);
const int np = state.numPhases();
const PhaseUsage& pu = fluid_.phaseUsage();
const DataBlock s = Eigen::Map<const DataBlock>(& state.saturation()[0], nc, np);
assert (active_[ Gas ]);
// reset the primary variables if RV and RS is not set Sg is used as primary variable.
primalVariable_.resize(nc);
std::fill(primalVariable_.begin(), primalVariable_.end(), PrimalVariables::Sg);
if (has_disgas_) {
// Oil/Gas or Water/Oil/Gas system
const V sg = s.col(pu.phase_pos[ Gas ]);
const V so = s.col(pu.phase_pos[ Oil ]);
for (V::Index c = 0, e = sg.size(); c != e; ++c) {
if ( sg[c] <= 0 && so[c] > 0 ) {primalVariable_[c] = PrimalVariables::RS; }
}
}
if (has_vapoil_) {
// Oil/Gas or Water/Oil/Gas system
const V sg = s.col(pu.phase_pos[ Gas ]);
const V so = s.col(pu.phase_pos[ Oil ]);
for (V::Index c = 0, e = so.size(); c != e; ++c) {
if (so[c] <= 0 && sg[c] > 0) {primalVariable_[c] = PrimalVariables::RV; }
}
}
}
} // namespace Opm