opm-simulators/opm/core/simulator/WellState.hpp

207 lines
8.9 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATE_HEADER_INCLUDED
#define OPM_WELLSTATE_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <vector>
#include <cassert>
#include <cstddef>
namespace Opm
{
/// The state of a set of wells.
class WellState
{
public:
/// Allocate and initialize if wells is non-null.
/// Also tries to give useful initial values to the bhp() and
/// wellRates() fields, depending on controls. The
/// perfRates() field is filled with zero, and perfPress()
/// with -1e100.
template <class State>
void init(const Wells* wells, const State& state)
{
if (wells) {
const int nw = wells->number_of_wells;
const int np = wells->number_of_phases;
bhp_.resize(nw);
thp_.resize(nw);
temperature_.resize(nw, 273.15 + 20); // standard temperature for now
wellrates_.resize(nw * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Stopped well:
// 1. Assign zero well rates.
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = 0.0;
}
// 2. Assign bhp equal to bhp control, if
// applicable, otherwise assign equal to
// first perforation cell pressure.
// Similarly set thp to thp control, or
// -1e100 if not applicable
switch (well_controls_get_current_type(ctrl)) {
case BHP:
bhp_[w] = well_controls_get_current_target( ctrl );
break;
case THP:
assert(false && "Not properly implemented");
thp_[w] = well_controls_get_current_target( ctrl );
break;
default:
{
const int first_cell = wells->well_cells[wells->well_connpos[w]];
bhp_[w] = state.pressure()[first_cell];
thp_[w] = -1e100;
}
}
} else {
// Open well:
// 1. Initialize well rates to match controls
// if type is SURFACE_RATE. Otherwise, we
// cannot set the correct value here, so we
// assign a small rate with the correct
// sign so that any logic depending on that
// sign will work as expected.
if (well_controls_get_current_type(ctrl) == SURFACE_RATE) {
const double rate_target = well_controls_get_current_target(ctrl);
const double * distr = well_controls_get_current_distr( ctrl );
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = rate_target * distr[p];
}
} else {
const double small_rate = 1e-14;
const double sign = (wells->type[w] == INJECTOR) ? 1.0 : -1.0;
for (int p = 0; p < np; ++p) {
wellrates_[np*w + p] = small_rate * sign;
}
}
// 2. if we have a thp/bhp control,
// set target (may be overridden later)
// Assumes only one THP / BHP control.
thp_[w] = -1e100;
bhp_[w] = -1e100;
int num_controls = well_controls_get_num( ctrl );
for (int i=0; i<num_controls; ++i) {
switch (well_controls_iget_type( ctrl , i )) {
case BHP:
bhp_[w] = well_controls_iget_target( ctrl , i );
break;
case THP:
thp_[w] = well_controls_iget_target( ctrl , i );
break;
default:
break;
}
}
// 3. Set BHP to a
// little above or below (depending on if
// the well is an injector or producer)
// pressure in first perforation cell.
switch (well_controls_get_current_type(ctrl)) {
case BHP:
break;
case THP:
//bhp_[w] = thp_[w]; //< TODO: ARB Adding this produces identical results as without THP control for artificial test case
//Already taken care of above in 2.
break;
default:
{
const int first_cell = wells->well_cells[wells->well_connpos[w]];
const double safety_factor = (wells->type[w] == INJECTOR) ? 1.01 : 0.99;
bhp_[w] = safety_factor*state.pressure()[first_cell];
// thp_[w] = -1e100;
}
}
}
}
// The perforation rates and perforation pressures are
// not expected to be consistent with bhp_ and wellrates_
// after init().
perfrates_.resize(wells->well_connpos[nw], 0.0);
perfpress_.resize(wells->well_connpos[nw], -1e100);
}
}
/// One bhp pressure per well.
std::vector<double>& bhp() { return bhp_; }
const std::vector<double>& bhp() const { return bhp_; }
/// One thp pressure per well.
std::vector<double>& thp() { return thp_; }
const std::vector<double>& thp() const { return thp_; }
/// One temperature per well.
std::vector<double>& temperature() { return temperature_; }
const std::vector<double>& temperature() const { return temperature_; }
/// One rate per well and phase.
std::vector<double>& wellRates() { return wellrates_; }
const std::vector<double>& wellRates() const { return wellrates_; }
/// One rate per well connection.
std::vector<double>& perfRates() { return perfrates_; }
const std::vector<double>& perfRates() const { return perfrates_; }
/// One pressure per well connection.
std::vector<double>& perfPress() { return perfpress_; }
const std::vector<double>& perfPress() const { return perfpress_; }
size_t getRestartBhpOffset() const {
return 0;
}
size_t getRestartPerfPressOffset() const {
return bhp_.size();
}
size_t getRestartPerfRatesOffset() const {
return getRestartPerfPressOffset() + perfpress_.size();
}
size_t getRestartTemperatureOffset() const {
return getRestartPerfRatesOffset() + perfrates_.size();
}
size_t getRestartWellRatesOffset() const {
return getRestartTemperatureOffset() + temperature_.size();
}
private:
std::vector<double> bhp_;
std::vector<double> thp_;
std::vector<double> temperature_;
std::vector<double> wellrates_;
std::vector<double> perfrates_;
std::vector<double> perfpress_;
};
} // namespace Opm
#endif // OPM_WELLSTATE_HEADER_INCLUDED