opm-simulators/opm/simulators/wells/WellAssemble.cpp
Bård Skaflestad 9524348401
Merge pull request #4549 from totto82/resv_undersat
fix RESV for undersaturated wells
2023-03-29 10:35:33 +02:00

322 lines
14 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2018 IRIS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/GroupState.hpp>
#include <opm/simulators/wells/RateConverter.hpp>
#include <opm/simulators/wells/VFPProperties.hpp>
#include <opm/simulators/wells/WellGroupControls.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
#include <opm/simulators/wells/WellState.hpp>
#include <cassert>
#include <cmath>
#include <stdexcept>
namespace Opm
{
template<class FluidSystem>
WellAssemble<FluidSystem>::
WellAssemble(const WellInterfaceFluidSystem<FluidSystem>& well)
: well_(well)
{}
template<class FluidSystem>
template<class EvalWell>
void
WellAssemble<FluidSystem>::
assembleControlEqProd(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::ProductionControls& controls,
const EvalWell& bhp,
const std::vector<EvalWell>& rates, // Always 3 canonical rates.
const std::function<EvalWell()>& bhp_from_thp,
EvalWell& control_eq,
DeferredLogger& deferred_logger) const
{
const auto current = well_state.well(well_.indexOfWell()).production_cmode;
const auto& pu = well_.phaseUsage();
const double efficiencyFactor = well_.wellEcl().getEfficiencyFactor();
switch (current) {
case Well::ProducerCMode::ORAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Liquid];
control_eq = rate - controls.oil_rate;
break;
}
case Well::ProducerCMode::WRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Aqua];
control_eq = rate - controls.water_rate;
break;
}
case Well::ProducerCMode::GRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx));
const EvalWell rate = -rates[BlackoilPhases::Vapour];
control_eq = rate - controls.gas_rate;
break;
}
case Well::ProducerCMode::LRAT: {
assert(FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx));
assert(FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx));
EvalWell rate = -rates[BlackoilPhases::Aqua] - rates[BlackoilPhases::Liquid];
control_eq = rate - controls.liquid_rate;
break;
}
case Well::ProducerCMode::CRAT: {
OPM_DEFLOG_THROW(std::runtime_error,
"CRAT control not supported, well " + well_.name(),
deferred_logger);
}
case Well::ProducerCMode::RESV: {
auto total_rate = rates[0]; // To get the correct type only.
total_rate = 0.0;
std::vector<double> convert_coeff(well_.numPhases(), 1.0);
well_.rateConverter().calcCoeff(/*fipreg*/ 0, well_.pvtRegionIdx(), well_state.well(well_.indexOfWell()).surface_rates, convert_coeff);
for (int phase = 0; phase < 3; ++phase) {
if (pu.phase_used[phase]) {
const int pos = pu.phase_pos[phase];
total_rate -= rates[phase] * convert_coeff[pos]; // Note different indices.
}
}
if (controls.prediction_mode) {
control_eq = total_rate - controls.resv_rate;
} else {
std::vector<double> hrates(well_.numPhases(), 0.);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
hrates[pu.phase_pos[Water]] = controls.water_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
}
std::vector<double> hrates_resv(well_.numPhases(), 0.);
well_.rateConverter().calcReservoirVoidageRates(/*fipreg*/ 0, well_.pvtRegionIdx(), hrates, hrates_resv);
double target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
control_eq = total_rate - target;
}
break;
}
case Well::ProducerCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::ProducerCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::ProducerCMode::GRUP: {
assert(well_.wellEcl().isAvailableForGroupControl());
const auto& group = schedule.getGroup(well_.wellEcl().groupName(), well_.currentStep());
// Annoying thing: the rates passed to this function are
// always of size 3 and in canonical (for PhaseUsage)
// order. This is what is needed for VFP calculations if
// they are required (THP controlled well). But for the
// group production control things we must pass only the
// active phases' rates.
std::vector<EvalWell> active_rates(pu.num_phases);
for (int canonical_phase = 0; canonical_phase < 3; ++canonical_phase) {
if (pu.phase_used[canonical_phase]) {
active_rates[pu.phase_pos[canonical_phase]] = rates[canonical_phase];
}
}
auto rCoeff = [this, &group_state](const RegionId id, const int region, const std::optional<std::string>& prod_gname, std::vector<double>& coeff)
{
if (prod_gname)
well_.rateConverter().calcCoeff(id, region, group_state.production_rates(*prod_gname), coeff);
else
well_.rateConverter().calcCoeff(id, region, coeff);
};
WellGroupControls(well_).getGroupProductionControl(group, well_state,
group_state,
schedule,
summaryState,
bhp, active_rates,
rCoeff,
efficiencyFactor,
control_eq,
deferred_logger);
break;
}
case Well::ProducerCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error,
"Well control must be specified for well " + well_.name(),
deferred_logger);
}
case Well::ProducerCMode::NONE: {
OPM_DEFLOG_THROW(std::runtime_error,
"Well control must be specified for well " + well_.name(),
deferred_logger);
}
}
}
template<class FluidSystem>
template<class EvalWell>
void
WellAssemble<FluidSystem>::
assembleControlEqInj(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& controls,
const EvalWell& bhp,
const EvalWell& injection_rate,
const std::function<EvalWell()>& bhp_from_thp,
EvalWell& control_eq,
DeferredLogger& deferred_logger) const
{
auto current = well_state.well(well_.indexOfWell()).injection_cmode;
const InjectorType injectorType = controls.injector_type;
const auto& pu = well_.phaseUsage();
const double efficiencyFactor = well_.wellEcl().getEfficiencyFactor();
switch (current) {
case Well::InjectorCMode::RATE: {
control_eq = injection_rate - controls.surface_rate;
break;
}
case Well::InjectorCMode::RESV: {
std::vector<double> convert_coeff(well_.numPhases(), 1.0);
well_.rateConverter().calcInjCoeff(/*fipreg*/ 0, well_.pvtRegionIdx(), convert_coeff);
double coeff = 1.0;
switch (injectorType) {
case InjectorType::WATER: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Aqua]];
break;
}
case InjectorType::OIL: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Liquid]];
break;
}
case InjectorType::GAS: {
coeff = convert_coeff[pu.phase_pos[BlackoilPhases::Vapour]];
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well_.wellEcl().name());
}
control_eq = coeff * injection_rate - controls.reservoir_rate;
break;
}
case Well::InjectorCMode::THP: {
control_eq = bhp - bhp_from_thp();
break;
}
case Well::InjectorCMode::BHP: {
control_eq = bhp - controls.bhp_limit;
break;
}
case Well::InjectorCMode::GRUP: {
assert(well_.wellEcl().isAvailableForGroupControl());
const auto& group = schedule.getGroup(well_.wellEcl().groupName(), well_.currentStep());
auto rCoeff = [this, &group_state](const RegionId id, const int region, const std::optional<std::string>& prod_gname, std::vector<double>& coeff)
{
if(prod_gname) {
well_.rateConverter().calcCoeff(id, region, group_state.production_rates(*prod_gname), coeff);
} else {
well_.rateConverter().calcInjCoeff(id, region, coeff);
}
};
WellGroupControls(well_).getGroupInjectionControl(group,
well_state,
group_state,
schedule,
summaryState,
injectorType,
bhp,
injection_rate,
rCoeff,
efficiencyFactor,
control_eq,
deferred_logger);
break;
}
case Well::InjectorCMode::CMODE_UNDEFINED: {
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + well_.name(), deferred_logger);
}
}
}
#define INSTANCE_METHODS(A,...) \
template void WellAssemble<A>:: \
assembleControlEqProd<__VA_ARGS__>(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const Well::ProductionControls&, \
const __VA_ARGS__&, \
const std::vector<__VA_ARGS__>&, \
const std::function<__VA_ARGS__()>&, \
__VA_ARGS__&, \
DeferredLogger&) const; \
template void WellAssemble<A>:: \
assembleControlEqInj<__VA_ARGS__>(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const Well::InjectionControls&, \
const __VA_ARGS__&, \
const __VA_ARGS__&, \
const std::function<__VA_ARGS__()>&, \
__VA_ARGS__&, \
DeferredLogger&) const;
using FluidSys = BlackOilFluidSystem<double, BlackOilDefaultIndexTraits>;
template class WellAssemble<FluidSys>;
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,3,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,4,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,5,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,6,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,7,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,8,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,9,0u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,4u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,5u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,6u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,7u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,8u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,9u>)
INSTANCE_METHODS(FluidSys, DenseAd::Evaluation<double,-1,10u>)
} // namespace Opm