mirror of
https://github.com/OPM/opm-simulators.git
synced 2024-12-19 05:53:28 -06:00
233 lines
9.2 KiB
C++
233 lines
9.2 KiB
C++
/*
|
|
Copyright 2012 SINTEF ICT, Applied Mathematics.
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <opm/core/pressure/IncompTpfa.hpp>
|
|
#include <opm/core/pressure/tpfa/ifs_tpfa.h>
|
|
#include <opm/core/pressure/tpfa/trans_tpfa.h>
|
|
#include <opm/core/pressure/mimetic/mimetic.h>
|
|
#include <opm/core/pressure/flow_bc.h>
|
|
#include <opm/core/linalg/LinearSolverInterface.hpp>
|
|
#include <opm/core/linalg/sparse_sys.h>
|
|
#include <opm/core/utility/ErrorMacros.hpp>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
|
|
/// Construct solver.
|
|
/// \param[in] g A 2d or 3d grid.
|
|
/// \param[in] permeability Array of permeability tensors, the array
|
|
/// should have size N*D^2, if D == g.dimensions
|
|
/// and N == g.number_of_cells.
|
|
/// \param[in] gravity Gravity vector. If nonzero, the array should
|
|
/// have D elements.
|
|
/// \param[in] wells The wells argument. Will be used in solution,
|
|
/// is ignored if NULL
|
|
IncompTpfa::IncompTpfa(const UnstructuredGrid& g,
|
|
const double* permeability,
|
|
const double* gravity,
|
|
const LinearSolverInterface& linsolver,
|
|
const struct Wells* wells)
|
|
: grid_(g),
|
|
linsolver_(linsolver),
|
|
htrans_(g.cell_facepos[ g.number_of_cells ]),
|
|
trans_ (g.number_of_faces),
|
|
wells_(wells)
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
tpfa_htrans_compute(gg, permeability, &htrans_[0]);
|
|
if (gravity) {
|
|
gpress_.resize(g.cell_facepos[ g.number_of_cells ], 0.0);
|
|
|
|
mim_ip_compute_gpress(gg->number_of_cells, gg->dimensions, gravity,
|
|
gg->cell_facepos, gg->cell_faces,
|
|
gg->face_centroids, gg->cell_centroids,
|
|
&gpress_[0]);
|
|
}
|
|
// gpress_omegaweighted_ is sent to assembler always, and it dislikes
|
|
// getting a zero pointer.
|
|
gpress_omegaweighted_.resize(g.cell_facepos[ g.number_of_cells ], 0.0);
|
|
h_ = ifs_tpfa_construct(gg, 0);
|
|
}
|
|
|
|
|
|
|
|
|
|
/// Destructor.
|
|
IncompTpfa::~IncompTpfa()
|
|
{
|
|
ifs_tpfa_destroy(h_);
|
|
}
|
|
|
|
|
|
|
|
/// Assemble and solve pressure system.
|
|
/// \param[in] totmob Must contain N total mobility values (one per cell).
|
|
/// totmob = \sum_{p} kr_p/mu_p.
|
|
/// \param[in] omega Must be empty if constructor gravity argument was null.
|
|
/// Otherwise must contain N mobility-weighted density values (one per cell).
|
|
/// omega = \frac{\sum_{p} mob_p rho_p}{\sum_p rho_p}.
|
|
/// \param[in] src Must contain N source rates (one per cell).
|
|
/// Positive values represent total inflow rates,
|
|
/// negative values represent total outflow rates.
|
|
/// \param[in] bcs If non-null, specifies boundary conditions.
|
|
/// If null, noflow conditions are assumed.
|
|
/// \param[out] pressure Will contain N cell-pressure values.
|
|
/// \param[out] faceflux Will contain F signed face flux values.
|
|
/// \param[out] well_bhp Will contain bhp values for each well passed
|
|
/// in the constructor.
|
|
/// \param[out] well_rate Will contain rate values for each well passed
|
|
/// in the constructor.
|
|
void IncompTpfa::solve(const std::vector<double>& totmob,
|
|
const std::vector<double>& omega,
|
|
const std::vector<double>& src,
|
|
const FlowBoundaryConditions* bcs,
|
|
std::vector<double>& pressure,
|
|
std::vector<double>& faceflux,
|
|
std::vector<double>& well_bhp,
|
|
std::vector<double>& well_rate)
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
|
|
|
|
if (!omega.empty()) {
|
|
if (gpress_.empty()) {
|
|
THROW("Nozero omega argument given, but gravity was null in constructor.");
|
|
}
|
|
mim_ip_density_update(gg->number_of_cells, gg->cell_facepos,
|
|
&omega[0],
|
|
&gpress_[0], &gpress_omegaweighted_[0]);
|
|
} else {
|
|
if (!gpress_.empty()) {
|
|
THROW("Empty omega argument given, but gravity was non-null in constructor.");
|
|
}
|
|
}
|
|
|
|
ifs_tpfa_forces F = { NULL, NULL, wells_, NULL, NULL };
|
|
if (! src.empty()) { F.src = &src[0]; }
|
|
F.bc = bcs;
|
|
|
|
ifs_tpfa_assemble(gg, &F, &trans_[0], &gpress_omegaweighted_[0], h_);
|
|
|
|
linsolver_.solve(h_->A, h_->b, h_->x);
|
|
|
|
pressure.resize(grid_.number_of_cells);
|
|
faceflux.resize(grid_.number_of_faces);
|
|
|
|
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
|
|
soln.cell_press = &pressure[0];
|
|
soln.face_flux = &faceflux[0];
|
|
|
|
ifs_tpfa_press_flux(gg, &F, &trans_[0], h_, &soln);
|
|
}
|
|
|
|
|
|
/// Assemble and solve pressure system with rock compressibility (assumed constant per cell).
|
|
/// \param[in] totmob Must contain N total mobility values (one per cell).
|
|
/// totmob = \sum_{p} kr_p/mu_p.
|
|
/// \param[in] omega Must be empty if constructor gravity argument was null.
|
|
/// Otherwise must contain N fractional-flow-weighted density
|
|
/// values (one per cell).
|
|
/// \param[in] src Must contain N source rates (one per cell).
|
|
/// Positive values represent total inflow rates,
|
|
/// negative values represent total outflow rates.
|
|
/// \param[in] bcs If non-null, specifies boundary conditions.
|
|
/// If null, noflow conditions are assumed.
|
|
/// \param[in] porevol Must contain N pore volumes.
|
|
/// \param[in] rock_comp Must contain N rock compressibilities.
|
|
/// rock_comp = (d poro / d p)*(1/poro).
|
|
/// \param[in] dt Timestep.
|
|
/// \param[out] pressure Will contain N cell-pressure values.
|
|
/// \param[out] faceflux Will contain F signed face flux values.
|
|
/// \param[out] well_bhp Will contain bhp values for each well passed
|
|
/// in the constructor
|
|
/// \param[out] well_rate Will contain rate values for each well passed
|
|
/// in the constructor
|
|
void IncompTpfa::solve(const std::vector<double>& totmob,
|
|
const std::vector<double>& omega,
|
|
const std::vector<double>& src,
|
|
const FlowBoundaryConditions* bcs,
|
|
const std::vector<double>& porevol,
|
|
const std::vector<double>& rock_comp,
|
|
const double dt,
|
|
std::vector<double>& pressure,
|
|
std::vector<double>& faceflux,
|
|
std::vector<double>& well_bhp,
|
|
std::vector<double>& well_rate)
|
|
{
|
|
UnstructuredGrid* gg = const_cast<UnstructuredGrid*>(&grid_);
|
|
tpfa_eff_trans_compute(gg, &totmob[0], &htrans_[0], &trans_[0]);
|
|
|
|
if (!omega.empty()) {
|
|
if (gpress_.empty()) {
|
|
THROW("Nozero omega argument given, but gravity was null in constructor.");
|
|
}
|
|
mim_ip_density_update(gg->number_of_cells, gg->cell_facepos,
|
|
&omega[0],
|
|
&gpress_[0], &gpress_omegaweighted_[0]);
|
|
} else {
|
|
if (!gpress_.empty()) {
|
|
THROW("Empty omega argument given, but gravity was non-null in constructor.");
|
|
}
|
|
}
|
|
|
|
ifs_tpfa_forces F = { NULL, NULL, wells_, NULL, NULL };
|
|
if (! src.empty()) { F.src = &src[0]; }
|
|
F.bc = bcs;
|
|
|
|
ifs_tpfa_assemble(gg, &F, &trans_[0], &gpress_omegaweighted_[0], h_);
|
|
|
|
// TODO: this is a hack, it would be better to handle this in a
|
|
// (variant of) ifs_tpfa_assemble().
|
|
if (!rock_comp.empty()) {
|
|
// We must compensate for adjustment made in ifs_tpfa_assemble()
|
|
// to make the system nonsingular.
|
|
h_->A->sa[0] *= 0.5;
|
|
|
|
// The extra term of the equation is
|
|
//
|
|
// porevol*rock_comp*(p - p0)/dt.
|
|
//
|
|
// The p part goes on the diagonal, the p0 on the rhs.
|
|
for (int c = 0; c < gg->number_of_cells; ++c) {
|
|
// Find diagonal
|
|
size_t j = csrmatrix_elm_index(c, c, h_->A);
|
|
double d = porevol[c] * rock_comp[c] / dt;
|
|
h_->A->sa[j] += d;
|
|
h_->b[c] += d * pressure[c];
|
|
}
|
|
}
|
|
|
|
linsolver_.solve(h_->A, h_->b, h_->x);
|
|
|
|
pressure.resize(grid_.number_of_cells);
|
|
faceflux.resize(grid_.number_of_faces);
|
|
|
|
ifs_tpfa_solution soln = { NULL, NULL, NULL, NULL };
|
|
soln.cell_press = &pressure[0];
|
|
soln.face_flux = &faceflux[0];
|
|
|
|
ifs_tpfa_press_flux(gg, &F, &trans_[0], h_, &soln);
|
|
}
|
|
|
|
|
|
|
|
} // namespace Opm
|