opm-simulators/tests/cuistl/test_cuSparse_matrix_operations.cpp
Tobias Meyer Andersen 533c5a1a3e Combine new diagonalMV kernels into one using
template arguements.
Use more consistent naming conventions.
Change printing function of CuVector from output
stream overload to toDebugString().
2023-10-16 09:53:02 +02:00

183 lines
6.2 KiB
C++

/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE TestCuSparseMatrixOperations
#include <boost/mpl/list.hpp>
#include <boost/test/unit_test.hpp>
#include <cuda_runtime.h>
#include <dune/istl/bcrsmatrix.hh>
#include <opm/simulators/linalg/cuistl/CuSparseMatrix.hpp>
#include <opm/simulators/linalg/cuistl/CuVector.hpp>
#include <opm/simulators/linalg/cuistl/PreconditionerAdapter.hpp>
#include <opm/simulators/linalg/cuistl/detail/cusparse_matrix_operations.hpp>
#include <opm/simulators/linalg/cuistl/detail/fix_zero_diagonal.hpp>
using NumericTypes = boost::mpl::list<double, float>;
BOOST_AUTO_TEST_CASE_TEMPLATE(FlattenAndInvertDiagonalWith3By3Blocks, T, NumericTypes)
{
const size_t blocksize = 3;
const size_t N = 2;
const int nonZeroes = 3;
using M = Dune::FieldMatrix<T, blocksize, blocksize>;
using SpMatrix = Dune::BCRSMatrix<M>;
/*
create this sparse matrix
| |1 2 3| | 1 0 0| |
| |5 2 3| | 0 1 0| |
| |2 1 1| | 0 0 1| |
| |
| |0 0 0| |-1 0 0| |
| |0 0 0| | 0 -1 0| |
| |0 0 0| | 0 0 -1| |
The diagonal elements inverted, and put in a vector should look like this
| |-1/4 1/4 0| |
| | 1/4 -4/5 3| |
| | 1/4 3/4 -2| |
| |
| | -1 0 0| |
| | 0 -1 0| |
| | 0 0 -1| |
*/
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
row.insert(row.index());
if (row.index() == 0) {
row.insert(row.index() + 1);
}
}
B[0][0][0][0] = 1.0;
B[0][0][0][1] = 2.0;
B[0][0][0][2] = 3.0;
B[0][0][1][0] = 5.0;
B[0][0][1][1] = 2.0;
B[0][0][1][2] = 3.0;
B[0][0][2][0] = 2.0;
B[0][0][2][1] = 1.0;
B[0][0][2][2] = 1.0;
B[0][1][0][0] = 1.0;
B[0][1][1][1] = 1.0;
B[0][1][2][2] = 1.0;
B[1][1][0][0] = -1.0;
B[1][1][1][1] = -1.0;
B[1][1][2][2] = -1.0;
Opm::cuistl::CuSparseMatrix<T> m = Opm::cuistl::CuSparseMatrix<T>::fromMatrix(B);
Opm::cuistl::CuVector<T> dInvDiag(blocksize * blocksize * N);
Opm::cuistl::detail::invertDiagonalAndFlatten(m.getNonZeroValues().data(),
m.getRowIndices().data(),
m.getColumnIndices().data(),
N,
blocksize,
dInvDiag.data());
std::vector<T> expectedInvDiag {-1.0 / 4.0,
1.0 / 4.0,
0.0,
1.0 / 4.0,
-5.0 / 4.0,
3.0,
1.0 / 4.0,
3.0 / 4.0,
-2.0,
-1.0,
0.0,
0.0,
0.0,
-1.0,
0.0,
0.0,
0.0,
-1.0};
std::vector<T> computedInvDiag = dInvDiag.asStdVector();
BOOST_REQUIRE_EQUAL(expectedInvDiag.size(), computedInvDiag.size());
for (size_t i = 0; i < expectedInvDiag.size(); ++i) {
BOOST_CHECK_CLOSE(expectedInvDiag[i], computedInvDiag[i], 1e-7);
}
}
BOOST_AUTO_TEST_CASE_TEMPLATE(FlattenAndInvertDiagonalWith2By2Blocks, T, NumericTypes)
{
const size_t blocksize = 2;
const size_t N = 2;
const int nonZeroes = 3;
using M = Dune::FieldMatrix<T, blocksize, blocksize>;
using SpMatrix = Dune::BCRSMatrix<M>;
/*
create this sparse matrix
| | 1 2| | 1 0| |
| |1/2 2| | 0 1| |
| |
| | 0 0| |-1 0| |
| | 0 0| | 0 -1| |
The diagonal elements inverted, and put in a vector should look like this
| | 2 - 2| |
| |-1/2 1| |
| |
| | -1 0| |
| | 0 -1| |
*/
SpMatrix B(N, N, nonZeroes, SpMatrix::row_wise);
for (auto row = B.createbegin(); row != B.createend(); ++row) {
row.insert(row.index());
if (row.index() == 0) {
row.insert(row.index() + 1);
}
}
B[0][0][0][0] = 1.0;
B[0][0][0][1] = 2.0;
B[0][0][1][0] = 1.0 / 2.0;
B[0][0][1][1] = 2.0;
B[0][1][0][0] = 1.0;
B[0][1][1][1] = 1.0;
B[1][1][0][0] = -1.0;
B[1][1][1][1] = -1.0;
Opm::cuistl::CuSparseMatrix<T> m = Opm::cuistl::CuSparseMatrix<T>::fromMatrix(B);
Opm::cuistl::CuVector<T> dInvDiag(blocksize * blocksize * N);
Opm::cuistl::detail::invertDiagonalAndFlatten(m.getNonZeroValues().data(),
m.getRowIndices().data(),
m.getColumnIndices().data(),
N,
blocksize,
dInvDiag.data());
std::vector<T> expectedInvDiag {2.0, -2.0, -1.0 / 2.0, 1.0, -1.0, 0.0, 0.0, -1.0};
std::vector<T> computedInvDiag = dInvDiag.asStdVector();
BOOST_REQUIRE_EQUAL(expectedInvDiag.size(), computedInvDiag.size());
for (size_t i = 0; i < expectedInvDiag.size(); ++i) {
BOOST_CHECK_CLOSE(expectedInvDiag[i], computedInvDiag[i], 1e-7);
}
}