mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-04 13:36:57 -06:00
247 lines
8.5 KiB
C++
247 lines
8.5 KiB
C++
/*
|
|
Copyright 2015 SINTEF ICT, Applied Mathematics.
|
|
Copyright 2015 Dr. Blatt - HPC-Simulation-Software & Services
|
|
Copyright 2015 NTNU
|
|
Copyright 2015 Statoil AS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
|
|
#include <opm/autodiff/DuneMatrix.hpp>
|
|
|
|
#include <opm/autodiff/NewtonIterationBlackoilInterleaved.hpp>
|
|
#include <opm/autodiff/NewtonIterationUtilities.hpp>
|
|
#include <opm/autodiff/AutoDiffHelpers.hpp>
|
|
#include <opm/core/utility/Exceptions.hpp>
|
|
#include <opm/core/linalg/ParallelIstlInformation.hpp>
|
|
|
|
#if HAVE_UMFPACK
|
|
#include <Eigen/UmfPackSupport>
|
|
#else
|
|
#include <Eigen/SparseLU>
|
|
#endif
|
|
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
typedef AutoDiffBlock<double> ADB;
|
|
typedef ADB::V V;
|
|
typedef ADB::M M;
|
|
|
|
|
|
|
|
|
|
|
|
/// Construct a system solver.
|
|
NewtonIterationBlackoilInterleaved::NewtonIterationBlackoilInterleaved(const parameter::ParameterGroup& param,
|
|
const boost::any& parallelInformation)
|
|
: iterations_( 0 ),
|
|
parallelInformation_(parallelInformation),
|
|
newton_use_gmres_( param.getDefault("newton_use_gmres", false ) ),
|
|
linear_solver_reduction_( param.getDefault("linear_solver_reduction", 1e-2 ) ),
|
|
linear_solver_maxiter_( param.getDefault("linear_solver_maxiter", 50 ) ),
|
|
linear_solver_restart_( param.getDefault("linear_solver_restart", 40 ) ),
|
|
linear_solver_verbosity_( param.getDefault("linear_solver_verbosity", 0 ))
|
|
{
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
/// Solve the linear system Ax = b, with A being the
|
|
/// combined derivative matrix of the residual and b
|
|
/// being the residual itself.
|
|
/// \param[in] residual residual object containing A and b.
|
|
/// \return the solution x
|
|
NewtonIterationBlackoilInterleaved::SolutionVector
|
|
NewtonIterationBlackoilInterleaved::computeNewtonIncrement(const LinearisedBlackoilResidual& residual) const
|
|
{
|
|
// Build the vector of equations.
|
|
const int np = residual.material_balance_eq.size();
|
|
std::vector<ADB> eqs;
|
|
eqs.reserve(np + 2);
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs.push_back(residual.material_balance_eq[phase]);
|
|
}
|
|
|
|
// check if wells are present
|
|
const bool hasWells = residual.well_flux_eq.size() > 0 ;
|
|
std::vector<ADB> elim_eqs;
|
|
if( hasWells )
|
|
{
|
|
eqs.push_back(residual.well_flux_eq);
|
|
eqs.push_back(residual.well_eq);
|
|
|
|
// Eliminate the well-related unknowns, and corresponding equations.
|
|
elim_eqs.reserve(2);
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well flux unknowns.
|
|
elim_eqs.push_back(eqs[np]);
|
|
eqs = eliminateVariable(eqs, np); // Eliminate well bhp unknowns.
|
|
assert(int(eqs.size()) == np);
|
|
}
|
|
|
|
// Scale material balance equations.
|
|
const double matbalscale[3] = { 1.1169, 1.0031, 0.0031 }; // HACK hardcoded instead of computed.
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
eqs[phase] = eqs[phase] * matbalscale[phase];
|
|
}
|
|
|
|
// Form modified system.
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> A;
|
|
V b;
|
|
formEllipticSystem(np, eqs, A, b);
|
|
|
|
// Create ISTL matrix with interleaved rows and columns (block structured).
|
|
Mat istlA;
|
|
formInterleavedSystem(eqs, A, istlA);
|
|
|
|
// Solve reduced system.
|
|
SolutionVector dx(SolutionVector::Zero(b.size()));
|
|
|
|
// Right hand side.
|
|
const int size = istlA.N();
|
|
Vector istlb(size);
|
|
for (int i = 0; i < size; ++i) {
|
|
istlb[i][0] = b(i);
|
|
istlb[i][1] = b(size + i);
|
|
istlb[i][2] = b(2*size + i);
|
|
}
|
|
|
|
// System solution
|
|
Vector x(istlA.M());
|
|
x = 0.0;
|
|
|
|
Dune::InverseOperatorResult result;
|
|
// Parallel version is deactivated until we figure out how to do it properly.
|
|
#if HAVE_MPI
|
|
if (parallelInformation_.type() == typeid(ParallelISTLInformation))
|
|
{
|
|
typedef Dune::OwnerOverlapCopyCommunication<int,int> Comm;
|
|
const ParallelISTLInformation& info =
|
|
boost::any_cast<const ParallelISTLInformation&>( parallelInformation_);
|
|
Comm istlComm(info.communicator());
|
|
info.copyValuesTo(istlComm.indexSet(), istlComm.remoteIndices(),
|
|
size, np);
|
|
// Construct operator, scalar product and vectors needed.
|
|
typedef Dune::OverlappingSchwarzOperator<Mat,Vector,Vector,Comm> Operator;
|
|
Operator opA(istlA, istlComm);
|
|
constructPreconditionerAndSolve<Dune::SolverCategory::overlapping>(opA, x, istlb, istlComm, result);
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
// Construct operator, scalar product and vectors needed.
|
|
typedef Dune::MatrixAdapter<Mat,Vector,Vector> Operator;
|
|
Operator opA(istlA);
|
|
Dune::Amg::SequentialInformation info;
|
|
constructPreconditionerAndSolve(opA, x, istlb, info, result);
|
|
}
|
|
|
|
// store number of iterations
|
|
iterations_ = result.iterations;
|
|
|
|
// Check for failure of linear solver.
|
|
if (!result.converged) {
|
|
OPM_THROW(LinearSolverProblem, "Convergence failure for linear solver.");
|
|
}
|
|
|
|
// Copy solver output to dx.
|
|
for (int i = 0; i < size; ++i) {
|
|
dx(i) = x[i][0];
|
|
dx(size + i) = x[i][1];
|
|
dx(2*size + i) = x[i][2];
|
|
}
|
|
|
|
if ( hasWells ) {
|
|
// Compute full solution using the eliminated equations.
|
|
// Recovery in inverse order of elimination.
|
|
dx = recoverVariable(elim_eqs[1], dx, np);
|
|
dx = recoverVariable(elim_eqs[0], dx, np);
|
|
}
|
|
return dx;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
void NewtonIterationBlackoilInterleaved::formInterleavedSystem(const std::vector<ADB>& eqs,
|
|
const Eigen::SparseMatrix<double, Eigen::RowMajor>& A,
|
|
Mat& istlA) const
|
|
{
|
|
const int np = eqs.size();
|
|
|
|
// Find sparsity structure as union of basic block sparsity structures,
|
|
// corresponding to the jacobians with respect to pressure.
|
|
// Use addition to get to the union structure.
|
|
Eigen::SparseMatrix<double> structure = eqs[0].derivative()[0];
|
|
for (int phase = 0; phase < np; ++phase) {
|
|
structure += eqs[phase].derivative()[0];
|
|
}
|
|
Eigen::SparseMatrix<double, Eigen::RowMajor> s = structure;
|
|
|
|
// Create ISTL matrix with interleaved rows and columns (block structured).
|
|
assert(np == 3);
|
|
istlA.setSize(s.rows(), s.cols(), s.nonZeros());
|
|
istlA.setBuildMode(Mat::row_wise);
|
|
const int* ia = s.outerIndexPtr();
|
|
const int* ja = s.innerIndexPtr();
|
|
for (Mat::CreateIterator row = istlA.createbegin(); row != istlA.createend(); ++row) {
|
|
int ri = row.index();
|
|
for (int i = ia[ri]; i < ia[ri + 1]; ++i) {
|
|
row.insert(ja[i]);
|
|
}
|
|
}
|
|
const int size = s.rows();
|
|
Span span[3] = { Span(size, 1, 0),
|
|
Span(size, 1, size),
|
|
Span(size, 1, 2*size) };
|
|
for (int row = 0; row < size; ++row) {
|
|
for (int col_ix = ia[row]; col_ix < ia[row + 1]; ++col_ix) {
|
|
const int col = ja[col_ix];
|
|
MatrixBlockType block;
|
|
for (int p1 = 0; p1 < np; ++p1) {
|
|
for (int p2 = 0; p2 < np; ++p2) {
|
|
block[p1][p2] = A.coeff(span[p1][row], span[p2][col]);
|
|
}
|
|
}
|
|
istlA[row][col] = block;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
const boost::any& NewtonIterationBlackoilInterleaved::parallelInformation() const
|
|
{
|
|
return parallelInformation_;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
} // namespace Opm
|
|
|