opm-simulators/tutorials/tutorial4.cpp
Kjetil Olsen Lye f10a76ffd1 merge.
2012-05-16 17:00:09 +02:00

618 lines
19 KiB
C++

/*
Copyright 2012 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#if HAVE_CONFIG_H
#include "config.h"
#endif // HAVE_CONFIG_H
#include <iostream>
#include <iomanip>
#include <fstream>
#include <vector>
#include <cassert>
#include <opm/core/grid.h>
#include <opm/core/GridManager.hpp>
#include <opm/core/utility/writeVtkData.hpp>
#include <opm/core/linalg/LinearSolverUmfpack.hpp>
#include <opm/core/pressure/IncompTpfa.hpp>
#include <opm/core/pressure/FlowBCManager.hpp>
#include <opm/core/fluid/IncompPropertiesBasic.hpp>
#include <opm/core/transport/transport_source.h>
#include <opm/core/transport/CSRMatrixUmfpackSolver.hpp>
#include <opm/core/transport/NormSupport.hpp>
#include <opm/core/transport/ImplicitAssembly.hpp>
#include <opm/core/transport/ImplicitTransport.hpp>
#include <opm/core/transport/JacobianSystem.hpp>
#include <opm/core/transport/CSRMatrixBlockAssembler.hpp>
#include <opm/core/transport/SinglePointUpwindTwoPhase.hpp>
#include <opm/core/TwophaseState.hpp>
#include <opm/core/utility/miscUtilities.hpp>
#include <opm/core/utility/Units.hpp>
#include <opm/core/utility/parameters/ParameterGroup.hpp>
#include <opm/core/WellCollection.hpp>
/// \page tutorial4 Well controls
///
/// \page tutorial4
/// \section commentedcode4 Commented code:
/// \page tutorial4
/// \details
/// We define a class which computes mobility, capillary pressure and
/// the minimum and maximum saturation value for each cell.
/// \code
class TwophaseFluid
{
public:
/// \endcode
/// \page tutorial4
/// \details Constructor operator. Takes in the fluid properties defined
/// \c props
/// \code
TwophaseFluid(const Opm::IncompPropertiesInterface& props);
/// \endcode
/// \page tutorial4
/// \details Density for each phase.
/// \code
double density(int phase) const;
/// \endcode
/// \page tutorial4
/// \details Computes the mobility and its derivative with respect to saturation
/// for a given cell \c c and saturation \c sat. The template classes \c Sat,
/// \c Mob, \c DMob are typically arrays. By using templates, we do not have to
/// investigate how these array objects are implemented
/// (as long as they have an \c operator[] method).
/// \code
template <class Sat, class Mob, class DMob>
void mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const;
/// \endcode
/// \page tutorial4
/// \details Computes the capillary pressure and its derivative with respect
/// to saturation
/// for a given cell \c c and saturation \c sat.
/// \code
template <class Sat, class Pcap, class DPcap>
void pc(int c, const Sat& s, Pcap& pcap, DPcap& dpcap) const;
/// \endcode
/// \page tutorial4
/// \details Returns the minimum permitted saturation.
/// \code
double s_min(int c) const;
/// \endcode
/// \page tutorial4
/// \details Returns the maximum permitted saturation
/// \code
double s_max(int c) const;
/// \endcode
/// \page tutorial4
/// \details Private variables
/// \code
private:
const Opm::IncompPropertiesInterface& props_;
std::vector<double> smin_;
std::vector<double> smax_;
};
/// \endcode
/// \page tutorial4
/// \details We set up the transport model.
/// \code
typedef Opm::SinglePointUpwindTwoPhase<TwophaseFluid> TransportModel;
/// \endcode
/// \page tutorial4
/// \details
/// The transport equation is nonlinear. We use an implicit transport solver
/// which implements a Newton-Raphson solver.
/// We define the format of the objects
/// which will be used by the solver.
/// \code
using namespace Opm::ImplicitTransportDefault;
typedef NewtonVectorCollection< ::std::vector<double> > NVecColl;
typedef JacobianSystem< struct CSRMatrix, NVecColl > JacSys;
template <class Vector>
class MaxNorm {
public:
static double
norm(const Vector& v) {
return AccumulationNorm <Vector, MaxAbs>::norm(v);
}
};
/// \endcode
/// \page tutorial4
/// \details
/// We set up the solver.
/// \code
typedef Opm::ImplicitTransport<TransportModel,
JacSys ,
MaxNorm ,
VectorNegater ,
VectorZero ,
MatrixZero ,
VectorAssign > TransportSolver;
/// \endcode
/// \page tutorial4
/// \details
/// Main function
/// \code
int main ()
{
/// \endcode
/// \page tutorial4
/// \details
/// We define the grid. A cartesian grid with 1200 cells.
/// \code
int dim = 3;
int nx = 20;
int ny = 20;
int nz = 1;
double dx = 10.;
double dy = 10.;
double dz = 10.;
using namespace Opm;
GridManager grid(nx, ny, nz, dx, dy, dz);
int num_cells = grid.c_grid()->number_of_cells;
/// \endcode
/// \page tutorial4
/// \details
/// We define the properties of the fluid.\n
/// Number of phases.
/// \code
int num_phases = 2;
using namespace unit;
using namespace prefix;
/// \endcode
/// \page tutorial4
/// \details density vector (one component per phase).
/// \code
std::vector<double> rho(2, 1000.);
/// \endcode
/// \page tutorial4
/// \details viscosity vector (one component per phase).
/// \code
std::vector<double> mu(2, 1.*centi*Poise);
/// \endcode
/// \page tutorial4
/// \details porosity and permeability of the rock.
/// \code
double porosity = 0.5;
double k = 10*milli*darcy;
/// \endcode
/// \page tutorial4
/// \details We define the relative permeability function. We use a basic fluid
/// description and set this function to be linear. For more realistic fluid, the
/// saturation function is given by the data.
/// \code
SaturationPropsBasic::RelPermFunc rel_perm_func;
rel_perm_func = SaturationPropsBasic::Linear;
/// \endcode
/// \page tutorial4
/// \details We construct a basic fluid with the properties we have defined above.
/// Each property is constant and hold for all cells.
/// \code
IncompPropertiesBasic props(num_phases, rel_perm_func, rho, mu,
porosity, k, dim, num_cells);
TwophaseFluid fluid(props);
/// \endcode
/// \page tutorial4
/// \details Gravity parameters. Here, we set zero gravity.
/// \code
const double *grav = 0;
std::vector<double> omega;
/// \endcode
/// \page tutorial4
/// \details We set up the source term
/// \code
std::vector<double> src(num_cells, 0.0);
src[0] = 1.;
src[num_cells-1] = -1.;
/// \endcode
/// \page tutorial4
/// \details We set up necessary information for the wells
/// \code
std::vector<double> wdp;
std::vector<double> well_bhp;
std::vector<double> well_flux;
std::vector<double> well_resflowrates_phase;
std::vector<double> well_surflowrates_phase;
std::vector<double> fractional_flows;
/// \endcode
/// \page tutorial4
/// \details We set up the source term for the transport solver.
/// \code
TransportSource* tsrc = create_transport_source(2, 2);
double ssrc[] = { 1.0, 0.0 };
double ssink[] = { 0.0, 1.0 };
double zdummy[] = { 0.0, 0.0 };
for (int cell = 0; cell < num_cells; ++cell) {
if (src[cell] > 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssrc, zdummy, tsrc);
} else if (src[cell] < 0.0) {
append_transport_source(cell, 2, 0, src[cell], ssink, zdummy, tsrc);
}
}
/// \endcode
/// \page tutorial4
/// \details We compute the pore volume
/// \code
std::vector<double> porevol;
Opm::computePorevolume(*grid.c_grid(), props.porosity(), porevol);
/// \endcode
/// \page tutorial4
/// \details We set up the transport solver.
/// \code
const bool guess_old_solution = true;
TransportModel model (fluid, *grid.c_grid(), porevol, grav, guess_old_solution);
TransportSolver tsolver(model);
/// \endcode
/// \page tutorial4
/// \details Time integration parameters
/// \code
double dt = 0.1*day;
int num_time_steps = 20;
/// \endcode
/// \page tutorial4
/// \details Control paramaters for the implicit solver.
/// \code
ImplicitTransportDetails::NRReport rpt;
ImplicitTransportDetails::NRControl ctrl;
/// \endcode
/// \page tutorial4
/// \details We define a vector which contains all cell indexes. We use this
/// vector to set up parameters on the whole domains.
std::vector<int> allcells(num_cells);
for (int cell = 0; cell < num_cells; ++cell) {
allcells[cell] = cell;
}
/// \page tutorial4
/// \details We set up the boundary conditions. Letting bcs empty is equivalent
/// to no flow boundary conditions.
/// \code
FlowBCManager bcs;
/// \endcode
/// \page tutorial4
/// \details
/// Linear solver init.
/// \code
using ImplicitTransportLinAlgSupport::CSRMatrixUmfpackSolver;
CSRMatrixUmfpackSolver linsolve;
/// \endcode
/// \page tutorial4
/// \details
/// We set up a two-phase state object, and
/// initialise water saturation to minimum everywhere.
/// \code
TwophaseState state;
state.init(*grid.c_grid(), 2);
state.setFirstSat(allcells, props, TwophaseState::MinSat);
/// \endcode
/// \page tutorial4
/// \details We introduce a vector which contains the total mobility
/// on all cells.
/// \code
std::vector<double> totmob;
/// \endcode
/// \page tutorial4
/// \details This string will contain the name of a VTK output vector.
/// \code
std::ostringstream vtkfilename;
/// \endcode
/// \page tutorial4
/// To create wells we need an instance of the PhaseUsage-object
PhaseUsage phase_usage;
phase_usage.num_phases = num_phases;
phase_usage.phase_used[BlackoilPhases::Aqua] = 1;
phase_usage.phase_used[BlackoilPhases::Liquid] = 1;
phase_usage.phase_used[BlackoilPhases::Vapour] = 0;
phase_usage.phase_pos[BlackoilPhases::Aqua] = 0;
phase_usage.phase_pos[BlackoilPhases::Liquid] = 1;
/// \page tutorial4
/// \details This will contain our well-specific information
/// \code
WellCollection well_collection;
/// \endcode
/// \page tutorial4
/// \details Create the production specification for our top well group.
/// We set a target limit for total reservoir rate, and set the controlling
/// mode of the group to be controlled by the reservoir rate.
/// \code
ProductionSpecification well_group_prod_spec;
well_group_prod_spec.reservoir_flow_max_rate_ = 0.1;
well_group_prod_spec.control_mode_ = ProductionSpecification::RESV;
/// \endcode
/// \page tutorial4
/// \details Create our well group. We hand it an empty injection specification,
/// as we don't want to control it's injection target. We use the shared_ptr-type because that's
/// what the interface expects. The first argument is the (unique) name of the group.
/// \code
std::tr1::shared_ptr<WellsGroupInterface> well_group(new WellsGroup("group", well_group_prod_spec, InjectionSpecification(),
phase_usage));
/// \endcode
/// \page tutorial4
/// \details We add our well_group to the well_collection
/// \code
well_collection.addChild(well_group);
/// \endcode
/// \page tutorial4
/// \details Create the production specification and Well objects (total 4 wells). We set all our wells to be group controlled.
/// We pass in the string argument \C "group" to set the parent group.
/// \code
const int num_wells = 4;
for (int i = 0; i < num_wells; ++i) {
std::stringstream well_name;
well_name << "well" << i;
ProductionSpecification production_specification;
production_specification.control_mode_ = ProductionSpecification::GRUP;
std::tr1::shared_ptr<WellsGroupInterface> well_leaf_node(new WellNode(well_name.str(), production_specification, InjectionSpecification(),
phase_usage));
well_collection.addChild(well_leaf_node, "group");
}
/// \endcode
/// \page tutorial4
/// \details Now we create the C struct to hold our wells (this is to interface with the solver code). For now we
/// \code
Wells* wells = create_wells(num_phases, num_wells, num_wells /*number of perforations. We'll only have one perforation per well*/);
/// \endcode
///
/// \page tutorial4
/// \details We need to add each well to the C API.
/// To do this we need to specify the relevant cells the well will be located in (\C well_cells).
/// \code
for (int i = 0; i < num_wells; ++i) {
const int well_cells = i*nx;
const double well_index = 1;
add_well(PRODUCER, 0, 1, NULL, &well_cells, &well_index, wells);
}
/// \endcode
/// \page tutorial4
/// \details We need to make the well collection aware of our wells object
/// \code
well_collection.setWellsPointer(wells);
/// \endcode
/// \page tutorial4
/// We're not using well controls, just group controls, so we need to apply them.
/// \code
well_collection.applyGroupControls();
///\endcode
/// \page tutorial4
/// \details We set up the pressure solver. We need to pass the wells pointer as the
/// last argument.
/// \code
LinearSolverUmfpack linsolver;
IncompTpfa psolver(*grid.c_grid(), props.permeability(), grav, linsolver, wells);
/// \endcode
/// \page tutorial4
/// \details Loop over the time steps.
/// \code
for (int i = 0; i < num_time_steps; ++i) {
/// \endcode
/// \page tutorial4
/// \details Compute the total mobility. It is needed by the pressure solver
/// \code
computeTotalMobility(props, allcells, state.saturation(), totmob);
/// \endcode
/// \endcode
/// \page tutorial4
/// \details In order to use the well controls, we need to generate the WDP for each well.
/// \code
Opm::computeWDP(*wells, *grid.c_grid(), state.saturation(), props.density(), gravity, true, wdp);
/// \endcode
/// \page tutorial4
/// \details We're solving the pressure until the well conditions are met
/// or until we reach the maximum number of iterations.
/// \code
const int max_well_iterations = 10;
int well_iter = 0;
bool well_conditions_met = false;
while (!well_conditions_met) {
/// \endcode
/// \page tutorial4
/// \details Solve the pressure equation
/// \code
psolver.solve(totmob, omega, src, wdp, bcs.c_bcs(),
state.pressure(), state.faceflux(), well_bhp,
well_flux);
/// \endcode
/// \page tutorial4
/// \details We compute the new well rates. Notice that we approximate (wrongly) surfflowsrates := resflowsrate
Opm::computeFractionalFlow(props, allcells, state.saturation(), fractional_flows);
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_resflowrates_phase);
Opm::computePhaseFlowRatesPerWell(*wells, well_flux, fractional_flows, well_surflowrates_phase);
/// \endcode
/// \page tutorial4
/// \details We check if the well conditions are met.
well_conditions_met = well_collection.conditionsMet(well_bhp, well_resflowrates_phase, well_surflowrates_phase);
++well_iter;
if (!well_conditions_met && well_iter == max_well_iterations) {
THROW("Conditions not met within " << max_well_iterations<< " iterations.");
}
}
/// \endcode
/// \page tutorial4
/// \details Transport solver
/// \code
tsolver.solve(*grid.c_grid(), tsrc, dt, ctrl, state, linsolve, rpt);
/// \endcode
/// \page tutorial4
/// \details Write the output to file.
/// \code
vtkfilename.str("");
vtkfilename << "tutorial4-" << std::setw(3) << std::setfill('0') << i << ".vtu";
std::ofstream vtkfile(vtkfilename.str().c_str());
Opm::DataMap dm;
dm["saturation"] = &state.saturation();
dm["pressure"] = &state.pressure();
Opm::writeVtkData(*grid.c_grid(), dm, vtkfile);
}
}
/// \endcode
/// \page tutorial4
/// \details Implementation of the TwophaseFluid class.
/// \code
TwophaseFluid::TwophaseFluid(const Opm::IncompPropertiesInterface& props)
: props_(props),
smin_(props.numCells()*props.numPhases()),
smax_(props.numCells()*props.numPhases())
{
const int num_cells = props.numCells();
std::vector<int> cells(num_cells);
for (int c = 0; c < num_cells; ++c) {
cells[c] = c;
}
props.satRange(num_cells, &cells[0], &smin_[0], &smax_[0]);
}
double TwophaseFluid::density(int phase) const
{
return props_.density()[phase];
}
template <class Sat,
class Mob,
class DMob>
void TwophaseFluid::mobility(int c, const Sat& s, Mob& mob, DMob& dmob) const
{
props_.relperm(1, &s[0], &c, &mob[0], &dmob[0]);
const double* mu = props_.viscosity();
mob[0] /= mu[0];
mob[1] /= mu[1];
/// \endcode
/// \page tutorial4
/// \details We
/// recall that we use Fortran ordering for kr derivatives,
/// therefore dmob[i*2 + j] is row j and column i of the
/// matrix.
/// Each row corresponds to a kr function, so which mu to
/// divide by also depends on the row, j.
/// \code
dmob[0*2 + 0] /= mu[0];
dmob[0*2 + 1] /= mu[1];
dmob[1*2 + 0] /= mu[0];
dmob[1*2 + 1] /= mu[1];
}
template <class Sat,
class Pcap,
class DPcap>
void TwophaseFluid::pc(int /*c */, const Sat& /* s*/, Pcap& pcap, DPcap& dpcap) const
{
pcap = 0.;
dpcap = 0.;
}
double TwophaseFluid::s_min(int c) const
{
return smin_[2*c + 0];
}
double TwophaseFluid::s_max(int c) const
{
return smax_[2*c + 0];
}
/// \endcode
/// \page tutorial4
/// \section results4 Results.
/// <TABLE>
/// <TR>
/// <TD> \image html tutorial4-000.png </TD>
/// <TD> \image html tutorial4-005.png </TD>
/// </TR>
/// <TR>
/// <TD> \image html tutorial4-010.png </TD>
/// <TD> \image html tutorial4-015.png </TD>
/// </TR>
/// <TR>
/// <TD> \image html tutorial4-019.png </TD>
/// <TD> </TD>
/// </TR>
/// </TABLE>
/// \page tutorial4
/// \details
/// \section completecode4 Complete source code:
/// \include tutorial4.cpp
/// \include generate_doc_figures.py