opm-simulators/opm/simulators/linalg/DILU.hpp
Arne Morten Kvarving f2a2fc2938 add missing include
2023-11-22 13:18:56 +01:00

363 lines
13 KiB
C++

/*
Copyright 2022-2023 SINTEF AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_DILU_HEADER_INCLUDED
#define OPM_DILU_HEADER_INCLUDED
#include <opm/common/ErrorMacros.hpp>
#include <opm/common/TimingMacros.hpp>
#include <opm/simulators/linalg/PreconditionerWithUpdate.hpp>
#include <dune/common/fmatrix.hh>
#include <dune/common/unused.hh>
#include <dune/common/version.hh>
#include <dune/istl/bcrsmatrix.hh>
#include <opm/simulators/linalg/GraphColoring.hpp>
#include <cstddef>
#include <optional>
#include <vector>
#if HAVE_OPENMP
#include <omp.h>
#endif
// TODO: rewrite factory and constructor to keep track of a number of threads variable
namespace Dune
{
/*! \brief The OpenMP thread parallelized DILU preconditioner.
* \details Safe to run serially without OpenMP. When run in parallel
the matrix is assumed to be symmetric.
\tparam M The matrix type to operate on
\tparam X Type of the update
\tparam Y Type of the defect
*/
template <class M, class X, class Y>
class MultithreadDILU : public PreconditionerWithUpdate<X, Y>
{
public:
//! \brief The matrix type the preconditioner is for.
using matrix_type = M;
//! \brief The domain type of the preconditioner.
using domain_type = X;
//! \brief The range type of the preconditioner.
using range_type = Y;
//! \brief The field type of the preconditioner.
using field_type = typename X::field_type;
//! \brief scalar type underlying the field_type
/*! \brief Constructor gets all parameters to operate the prec.
\param A The matrix to operate on.
*/
MultithreadDILU(const M& A)
: A_(A)
{
OPM_TIMEBLOCK(prec_construct);
// TODO: rewrite so this value is set by an argument to the constructor
#if HAVE_OPENMP
use_multithreading = omp_get_max_threads() > 1;
#endif
if (use_multithreading) {
A_reordered_.emplace(A_.N(), A_.N(), A_.nonzeroes(), M::row_wise);
//! Assuming symmetric matrices using a lower triangular coloring to construct
//! the levels is sufficient
level_sets_ = Opm::getMatrixRowColoring(A_, Opm::ColoringType::LOWER);
reordered_to_natural_ = std::vector<std::size_t>(A_.N());
natural_to_reorder_ = std::vector<std::size_t>(A_.N());
int globCnt = 0;
for (const auto& level_set : level_sets_) {
for (const auto j : level_set) {
reordered_to_natural_[globCnt] = j;
natural_to_reorder_[j] = globCnt++;
}
}
for (auto dst_row_it = A_reordered_->createbegin(); dst_row_it != A_reordered_->createend(); ++dst_row_it) {
auto src_row = A_.begin() + reordered_to_natural_[dst_row_it.index()];
// For elements in A
for (auto elem = src_row->begin(); elem != src_row->end(); elem++) {
dst_row_it.insert(elem.index());
}
}
}
Dinv_.resize(A_.N());
update();
}
/*!
\brief Update the preconditioner.
\copydoc Preconditioner::update()
*/
void update() override
{
OPM_TIMEBLOCK(prec_update);
if (use_multithreading) {
parallelUpdate();
} else {
serialUpdate();
}
}
/*!
\brief Prepare the preconditioner.
\copydoc Preconditioner::pre(X&,Y&)
*/
void pre(X& v, Y& d) override
{
DUNE_UNUSED_PARAMETER(v);
DUNE_UNUSED_PARAMETER(d);
}
/*!
\brief Apply the preconditioner.
\copydoc Preconditioner::apply(X&,const Y&)
*/
void apply(X& v, const Y& d) override
{
OPM_TIMEBLOCK(prec_apply);
if (use_multithreading) {
parallelApply(v, d);
} else {
serialApply(v, d);
}
}
/*!
\brief Clean up.
\copydoc Preconditioner::post(X&)
*/
void post(X& x) override
{
DUNE_UNUSED_PARAMETER(x);
}
std::vector<typename M::block_type> getDiagonal()
{
return Dinv_;
}
//! Category of the preconditioner (see SolverCategory::Category)
virtual SolverCategory::Category category() const override
{
return SolverCategory::sequential;
}
private:
//! \brief The matrix we operate on.
const M& A_;
//! \brief Copy of A_ that is reordered to store rows that can be computed simultaneously next to each other to
//! increase cache usage when multithreading
std::optional<M> A_reordered_;
//! \brief The inverse of the diagnal matrix
std::vector<typename M::block_type> Dinv_;
//! \brief SparseTable storing each row by level
Opm::SparseTable<std::size_t> level_sets_;
//! \brief converts from index in reordered structure to index natural ordered structure
std::vector<std::size_t> reordered_to_natural_;
//! \brief converts from index in natural ordered structure to index reordered strucutre
std::vector<std::size_t> natural_to_reorder_;
//! \brief Boolean value describing whether or not to use multithreaded version of functions
bool use_multithreading{false};
void serialUpdate()
{
for (std::size_t row = 0; row < A_.N(); ++row) {
Dinv_[row] = A_[row][row];
}
for (auto row = A_.begin(); row != A_.end(); ++row) {
const auto row_i = row.index();
auto Dinv_temp = Dinv_[row_i];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij) {
const auto col_j = a_ij.index();
const auto a_ji = A_[col_j].find(row_i);
// if A[i, j] != 0 and A[j, i] != 0
if (a_ji != A_[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[row_i] = Dinv_temp;
}
}
void parallelUpdate()
{
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (std::size_t row = 0; row != A_.N(); ++row) {
Dinv_[natural_to_reorder_[row]] = A_[row][row];
}
// TODO: is there a better/faster way of copying all values?
for (auto dst_row_it = A_reordered_->begin(); dst_row_it != A_reordered_->end(); ++dst_row_it) {
auto src_row = A_.begin() + reordered_to_natural_[dst_row_it.index()];
for (auto elem = src_row->begin(); elem != src_row->end(); elem++) {
(*A_reordered_)[dst_row_it.index()][elem.index()] = *elem;
}
}
int level_start_idx = 0;
for (int level = 0; level < level_sets_.size(); ++level) {
const int num_of_rows_in_level = level_sets_[level].size();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = 0; row_idx_in_level < num_of_rows_in_level; ++row_idx_in_level) {
auto row = A_reordered_->begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
// auto Dinv_temp = Dinv_[row_i];
auto Dinv_temp = Dinv_[level_start_idx + row_idx_in_level];
for (auto a_ij = row->begin(); a_ij.index() < row_i; ++a_ij) {
const auto col_j = natural_to_reorder_[a_ij.index()];
const auto a_ji = (*A_reordered_)[col_j].find(row_i);
if (a_ji != (*A_reordered_)[col_j].end()) {
// Dinv_temp -= A[i, j] * d[j] * A[j, i]
Dinv_temp -= (*a_ij) * Dune::FieldMatrix(Dinv_[col_j]) * (*a_ji);
}
}
Dinv_temp.invert();
Dinv_[level_start_idx + row_idx_in_level] = Dinv_temp;
}
level_start_idx += num_of_rows_in_level;
}
}
void serialApply(X& v, const Y& d)
{
// M = (D + L_A) D^-1 (D + U_A) (a LU decomposition of M)
// where L_A and U_A are the strictly lower and upper parts of A and M has the properties:
// diag(A) = diag(M)
// Working with defect d = b - Ax and update v = x_{n+1} - x_n
// solving the product M^-1(d) using upper and lower triangular solve
// v = M^{-1}*d = (D + U_A)^{-1} D (D + L_A)^{-1} * d
// lower triangular solve: (D + L_A) y = d
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
{
OPM_TIMEBLOCK(lower_solve);
auto endi = A_.end();
for (auto row = A_.begin(); row != endi; ++row) {
const auto row_i = row.index();
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[row_i].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
}
{
OPM_TIMEBLOCK(upper_solve);
// upper triangular solve: (D + U_A) v = Dy
auto rendi = A_.beforeBegin();
for (auto row = A_.beforeEnd(); row != rendi; --row) {
const auto row_i = row.index();
// rhs = 0
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// if A[i][j] != 0
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[row_i].mmv(rhs, v[row_i]);
}
}
}
void parallelApply(X& v, const Y& d)
{
using Xblock = typename X::block_type;
using Yblock = typename Y::block_type;
{
OPM_TIMEBLOCK(lower_solve);
int level_start_idx = 0;
for (int level = 0; level < level_sets_.size(); ++level) {
const int num_of_rows_in_level = level_sets_[level].size();
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = 0; row_idx_in_level < num_of_rows_in_level; ++row_idx_in_level) {
auto row = A_reordered_->begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
Yblock rhs = d[row_i];
for (auto a_ij = (*row).begin(); a_ij.index() < row_i; ++a_ij) {
// if A[i][j] != 0
// rhs -= A[i][j]* y[j], where v_j stores y_j
const auto col_j = a_ij.index();
a_ij->mmv(v[col_j], rhs);
}
// y_i = Dinv_i * rhs
// storing y_i in v_i
Dinv_[level_start_idx + row_idx_in_level].mv(rhs, v[row_i]); // (D + L_A)_ii = D_i
}
level_start_idx += num_of_rows_in_level;
}
}
{
int level_start_idx = A_.N();
// upper triangular solve: (D + U_A) v = Dy
for (int level = level_sets_.size() - 1; level >= 0; --level) {
const int num_of_rows_in_level = level_sets_[level].size();
level_start_idx -= num_of_rows_in_level;
#ifdef _OPENMP
#pragma omp parallel for
#endif
for (int row_idx_in_level = num_of_rows_in_level - 1; row_idx_in_level >= 0; --row_idx_in_level) {
auto row = A_reordered_->begin() + level_start_idx + row_idx_in_level;
const auto row_i = reordered_to_natural_[row.index()];
Xblock rhs(0.0);
for (auto a_ij = (*row).beforeEnd(); a_ij.index() > row_i; --a_ij) {
// rhs += A[i][j]*v[j]
const auto col_j = a_ij.index();
a_ij->umv(v[col_j], rhs);
}
// calculate update v = M^-1*d
// v_i = y_i - Dinv_i*rhs
// before update v_i is y_i
Dinv_[level_start_idx + row_idx_in_level].mmv(rhs, v[row_i]);
}
}
}
}
};
} // namespace Dune
#endif