mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-16 15:51:57 -06:00
374 lines
15 KiB
C++
374 lines
15 KiB
C++
/*
|
|
Copyright 2019 Equinor ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <vector>
|
|
#include <cstring>
|
|
#include <algorithm> // for fill()
|
|
#include <random>
|
|
#include <limits>
|
|
#include <sstream>
|
|
|
|
#include <opm/common/ErrorMacros.hpp>
|
|
|
|
#include <opm/simulators/linalg/bda/Reorder.hpp>
|
|
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
|
|
|
|
namespace bda
|
|
{
|
|
|
|
|
|
/* Give every node in the matrix (of which only the sparsity pattern in the
|
|
* form of row pointers and column indices arrays are in the input), a color
|
|
* in the colors array. Also return the amount of colors in the return integer.
|
|
* This graph-coloring algorithm is based on the Jones-Plassmann algorithm, proposed in:
|
|
* "A Parallel Graph Coloring Heuristic" by M.T. Jones and P.E. Plassmann in SIAM Journal of Scientific Computing 14 (1993) */
|
|
|
|
template <unsigned int block_size>
|
|
int colorBlockedNodes(int rows, const int *CSRRowPointers, const int *CSRColIndices, const int *CSCColPointers, const int *CSCRowIndices, std::vector<int>& colors, int maxRowsPerColor, int maxColsPerColor)
|
|
{
|
|
int left, c;
|
|
const int max_tries = 100; // since coloring is random, it is possible that a coloring fails. In that case, try again.
|
|
std::vector<int> randoms;
|
|
randoms.resize(rows);
|
|
|
|
std::vector<bool> visitedColumns;
|
|
visitedColumns.resize(rows);
|
|
std::fill(visitedColumns.begin(), visitedColumns.end(), false);
|
|
|
|
unsigned int colsInColor;
|
|
unsigned int additionalColsInRow;
|
|
|
|
for (unsigned int t = 0; t < max_tries; t++) {
|
|
// (re)initialize data for coloring process
|
|
std::random_device rd;
|
|
std::mt19937 gen(rd());
|
|
std::uniform_int_distribution<> uniform(0, std::numeric_limits<int>::max());
|
|
{
|
|
for(int i = 0; i < rows; ++i){
|
|
randoms[i] = uniform(gen);
|
|
}
|
|
}
|
|
std::fill(colors.begin(), colors.end(), -1);
|
|
|
|
// actually perform coloring
|
|
for (c = 0; c < MAX_COLORS; c++) {
|
|
unsigned int rowsInColor = 0;
|
|
colsInColor = 0;
|
|
for (int i = 0; i < rows; i++)
|
|
{
|
|
bool iMax = true; // true iff you have max random
|
|
|
|
// ignore nodes colored earlier
|
|
if ((colors[i] != -1))
|
|
continue;
|
|
|
|
int ir = randoms[i];
|
|
|
|
// look at all nodex that node i is connected to
|
|
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
|
|
// ignore nodes colored earlier (and yourself)
|
|
int j = CSRColIndices[k];
|
|
int jc = colors[j];
|
|
if (((jc != -1) && (jc != c)) || (i == j)) {
|
|
continue;
|
|
}
|
|
// node i is not in the current color if one of its neighbours shares this color,
|
|
if (jc == c) {
|
|
iMax = false;
|
|
break;
|
|
}
|
|
// or if one of its uncolored neighbours has a higher random value
|
|
int jr = randoms[j];
|
|
if (ir <= jr) {
|
|
iMax = false;
|
|
break;
|
|
}
|
|
}
|
|
// look at all nodes that have a connection to node i
|
|
for (int k = CSCColPointers[i]; k < CSCColPointers[i + 1]; k++) {
|
|
// ignore nodes colored earlier (and yourself)
|
|
int j = CSCRowIndices[k];
|
|
int jc = colors[j];
|
|
if (((jc != -1) && (jc != c)) || (i == j)) {
|
|
continue;
|
|
}
|
|
// node i is not in the current color if one of its neighbours shares this color,
|
|
if (jc == c) {
|
|
iMax = false;
|
|
break;
|
|
}
|
|
// or if one of its uncolored neighbours has a higher random value
|
|
int jr = randoms[j];
|
|
if (ir <= jr) {
|
|
iMax = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
// assign color if you have the maximum random number
|
|
if (iMax) {
|
|
additionalColsInRow = 0;
|
|
for (int k = CSRRowPointers[i]; k < CSRRowPointers[i + 1]; k++) {
|
|
int j = CSRColIndices[k];
|
|
if (!visitedColumns[j]) {
|
|
visitedColumns[j] = true;
|
|
additionalColsInRow += block_size;
|
|
}
|
|
}
|
|
if ((colsInColor + additionalColsInRow) > static_cast<unsigned int>(maxColsPerColor)) {
|
|
break;
|
|
}
|
|
colsInColor += additionalColsInRow;
|
|
colors[i] = c;
|
|
rowsInColor += block_size;
|
|
if ((rowsInColor + block_size - 1) >= static_cast<unsigned int>(maxRowsPerColor)) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
// Check if graph coloring is done.
|
|
left = 0;
|
|
for (int k = 0; k < rows; k++) {
|
|
if (colors[k] == -1) {
|
|
left++;
|
|
}
|
|
}
|
|
if (left == 0) {
|
|
return c + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
std::ostringstream oss;
|
|
oss << "Error could not find a graph coloring with " << c << " colors after " << max_tries << " tries.\nNumber of colorless nodes: " << left;
|
|
OPM_THROW(std::logic_error, oss.str());
|
|
return -1;
|
|
}
|
|
|
|
|
|
/* Reorder a matrix by a specified input order.
|
|
* Both a to order array, which contains for every node from the old matrix where it will move in the new matrix,
|
|
* and the from order, which contains for every node in the new matrix where it came from in the old matrix.*/
|
|
|
|
template <unsigned int block_size>
|
|
void reorderBlockedMatrixByPattern(BlockedMatrix<block_size> *mat, int *toOrder, int *fromOrder, BlockedMatrix<block_size> *rmat) {
|
|
const unsigned int bs = block_size;
|
|
int rIndex = 0;
|
|
int i, k;
|
|
unsigned int j;
|
|
|
|
rmat->rowPointers[0] = 0;
|
|
for (i = 0; i < mat->Nb; i++) {
|
|
int thisRow = fromOrder[i];
|
|
// put thisRow from the old matrix into row i of the new matrix
|
|
rmat->rowPointers[i + 1] = rmat->rowPointers[i] + mat->rowPointers[thisRow + 1] - mat->rowPointers[thisRow];
|
|
for (k = mat->rowPointers[thisRow]; k < mat->rowPointers[thisRow + 1]; k++) {
|
|
for (j = 0; j < bs * bs; j++){
|
|
rmat->nnzValues[rIndex * bs * bs + j] = mat->nnzValues[k * bs * bs + j];
|
|
}
|
|
rmat->colIndices[rIndex] = mat->colIndices[k];
|
|
rIndex++;
|
|
}
|
|
}
|
|
// re-assign column indices according to the new positions of the nodes referenced by the column indices
|
|
for (i = 0; i < mat->nnzbs; i++) {
|
|
rmat->colIndices[i] = toOrder[rmat->colIndices[i]];
|
|
}
|
|
// re-sort the column indices of every row.
|
|
for (i = 0; i < mat->Nb; i++) {
|
|
sortBlockedRow<bs>(rmat->colIndices, rmat->nnzValues, rmat->rowPointers[i], rmat->rowPointers[i + 1] - 1);
|
|
}
|
|
}
|
|
|
|
/* Reorder a matrix according to the colors that every node of the matrix has received*/
|
|
|
|
void colorsToReordering(int Nb, std::vector<int>& colors, int numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
|
|
int reordered = 0;
|
|
int i, c;
|
|
|
|
// Find reordering patterns
|
|
for (c = 0; c < numColors; c++) {
|
|
for (i = 0; i < Nb; i++) {
|
|
if (colors[i] == c) {
|
|
rowsPerColor[c]++;
|
|
toOrder[i] = reordered;
|
|
fromOrder[reordered] = i;
|
|
reordered++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Reorder a vector according to a reordering pattern
|
|
|
|
template <unsigned int block_size>
|
|
void reorderBlockedVectorByPattern(int Nb, double *vector, int *fromOrder, double *rVector) {
|
|
for (int i = 0; i < Nb; i++) {
|
|
for (unsigned int j = 0; j < block_size; j++) {
|
|
rVector[block_size * i + j] = vector[block_size * fromOrder[i] + j];
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/* Check is operations on a node in the matrix can be started
|
|
* A node can only be started if all nodes that it depends on during sequential execution have already completed.*/
|
|
|
|
bool canBeStarted(const int rowIndex, const int *rowPointers, const int *colIndices, const std::vector<bool>& doneRows) {
|
|
bool canStart = !doneRows[rowIndex];
|
|
int i, thisDependency;
|
|
if (canStart) {
|
|
for (i = rowPointers[rowIndex]; i < rowPointers[rowIndex + 1]; i++) {
|
|
thisDependency = colIndices[i];
|
|
// Only dependencies on rows that should execute before the current one are relevant
|
|
if (thisDependency >= rowIndex)
|
|
break;
|
|
// Check if dependency has been resolved
|
|
if (!doneRows[thisDependency]) {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return canStart;
|
|
}
|
|
|
|
/*
|
|
* The level scheduling of a non-symmetric, blocked matrix requires access to a CSC encoding and a CSR encoding of the sparsity pattern of the input matrix.
|
|
* This function is based on a standard level scheduling algorithm, like the one described in:
|
|
* "Iterative methods for Sparse Linear Systems" by Yousef Saad in section 11.6.3
|
|
*/
|
|
|
|
void findLevelScheduling(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb, int *numColors, int *toOrder, int* fromOrder, std::vector<int>& rowsPerColor) {
|
|
int activeRowIndex = 0, colorEnd, nextActiveRowIndex = 0;
|
|
int thisRow;
|
|
std::vector<bool> doneRows(Nb, false);
|
|
rowsPerColor.reserve(Nb);
|
|
|
|
std::vector <int> rowsToStart;
|
|
|
|
// find starting rows: rows that are independent from all rows that come before them.
|
|
for (thisRow = 0; thisRow < Nb; thisRow++) {
|
|
if (canBeStarted(thisRow, CSCColPointers, CSCRowIndices, doneRows)) {
|
|
fromOrder[nextActiveRowIndex] = thisRow;
|
|
toOrder[thisRow] = nextActiveRowIndex;
|
|
nextActiveRowIndex++;
|
|
}
|
|
}
|
|
// 'do' compute on all active rows
|
|
for (colorEnd = 0; colorEnd < nextActiveRowIndex; colorEnd++) {
|
|
doneRows[fromOrder[colorEnd]] = true;
|
|
}
|
|
|
|
rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex);
|
|
|
|
while (colorEnd < Nb) {
|
|
// Go over all rows active from the last color, and check which of their neighbours can be activated this color
|
|
for (; activeRowIndex < colorEnd; activeRowIndex++) {
|
|
thisRow = fromOrder[activeRowIndex];
|
|
|
|
for (int i = CSCColPointers[thisRow]; i < CSCColPointers[thisRow + 1]; i++) {
|
|
int thatRow = CSCRowIndices[i];
|
|
|
|
if (canBeStarted(thatRow, CSRRowPointers, CSRColIndices, doneRows)) {
|
|
rowsToStart.emplace_back(thatRow);
|
|
}
|
|
}
|
|
}
|
|
// 'do' compute on all active rows
|
|
for (unsigned int i = 0; i < rowsToStart.size(); i++) {
|
|
thisRow = rowsToStart[i];
|
|
if (!doneRows[thisRow]) {
|
|
doneRows[thisRow] = true;
|
|
fromOrder[nextActiveRowIndex] = thisRow;
|
|
toOrder[thisRow] = nextActiveRowIndex;
|
|
nextActiveRowIndex++;
|
|
}
|
|
}
|
|
colorEnd = nextActiveRowIndex;
|
|
rowsPerColor.emplace_back(nextActiveRowIndex - activeRowIndex);
|
|
}
|
|
|
|
*numColors = rowsPerColor.size();
|
|
}
|
|
|
|
/* Perform the complete graph coloring algorithm on a matrix. Return an array with the amount of nodes per color.*/
|
|
|
|
template <unsigned int block_size>
|
|
void findGraphColoring(const int *CSRColIndices, const int *CSRRowPointers, const int *CSCRowIndices, const int *CSCColPointers, int Nb, int maxRowsPerColor, int maxColsPerColor, int *numColors, int *toOrder, int *fromOrder, std::vector<int>& rowsPerColor) {
|
|
std::vector<int> rowColor;
|
|
rowColor.resize(Nb);
|
|
|
|
*numColors = colorBlockedNodes<block_size>(Nb, CSRRowPointers, CSRColIndices, CSCColPointers, CSCRowIndices, rowColor, maxRowsPerColor, maxColsPerColor);
|
|
|
|
rowsPerColor.resize(*numColors);
|
|
colorsToReordering(Nb, rowColor, *numColors, toOrder, fromOrder, rowsPerColor);
|
|
}
|
|
|
|
// based on the scipy package from python, scipy/sparse/sparsetools/csr.h on github
|
|
void csrPatternToCsc(int *CSRColIndices, int *CSRRowPointers, int *CSCRowIndices, int *CSCColPointers, int Nb) {
|
|
|
|
int nnz = CSRRowPointers[Nb];
|
|
|
|
// compute number of nnzs per column
|
|
std::fill(CSCColPointers, CSCColPointers + Nb, 0);
|
|
|
|
for (int n = 0; n < nnz; ++n) {
|
|
CSCColPointers[CSRColIndices[n]]++;
|
|
}
|
|
|
|
// cumsum the nnz per col to get CSCColPointers
|
|
for (int col = 0, cumsum = 0; col < Nb; ++col) {
|
|
int temp = CSCColPointers[col];
|
|
CSCColPointers[col] = cumsum;
|
|
cumsum += temp;
|
|
}
|
|
CSCColPointers[Nb] = nnz;
|
|
|
|
for (int row = 0; row < Nb; ++row) {
|
|
for (int j = CSRRowPointers[row]; j < CSRRowPointers[row + 1]; ++j) {
|
|
int col = CSRColIndices[j];
|
|
int dest = CSCColPointers[col];
|
|
CSCRowIndices[dest] = row;
|
|
CSCColPointers[col]++;
|
|
}
|
|
}
|
|
|
|
for (int col = 0, last = 0; col <= Nb; ++col) {
|
|
int temp = CSCColPointers[col];
|
|
CSCColPointers[col] = last;
|
|
last = temp;
|
|
}
|
|
}
|
|
|
|
|
|
#define INSTANTIATE_BDA_FUNCTIONS(n) \
|
|
template int colorBlockedNodes<n>(int, const int *, const int *, const int *, const int *, std::vector<int>&, int, int); \
|
|
template void reorderBlockedMatrixByPattern<n>(BlockedMatrix<n> *, int *, int *, BlockedMatrix<n> *); \
|
|
template void reorderBlockedVectorByPattern<n>(int, double*, int*, double*); \
|
|
template void findGraphColoring<n>(const int *, const int *, const int *, const int *, int, int, int, int *, int *, int *, std::vector<int>&); \
|
|
|
|
INSTANTIATE_BDA_FUNCTIONS(1);
|
|
INSTANTIATE_BDA_FUNCTIONS(2);
|
|
INSTANTIATE_BDA_FUNCTIONS(3);
|
|
INSTANTIATE_BDA_FUNCTIONS(4);
|
|
|
|
#undef INSTANTIATE_BDA_FUNCTIONS
|
|
|
|
} //namespace bda
|