opm-simulators/opm/simulators/wells/MultisegmentWellAssemble.cpp
2023-05-12 10:49:17 +02:00

373 lines
16 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/MultisegmentWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/MultisegmentWellEquations.hpp>
#include <opm/simulators/wells/MultisegmentWellPrimaryVariables.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellHelpers.hpp>
#include <opm/simulators/wells/WellInterfaceIndices.hpp>
#include <opm/simulators/wells/WellState.hpp>
namespace Opm {
//! \brief Class administering assembler access to equation system.
template<class Scalar, int numWellEq, int numEq>
class MultisegmentWellEquationAccess {
public:
//! \brief Constructor initializes reference to the equation system.
MultisegmentWellEquationAccess(MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns)
: eqns_(eqns)
{}
using BVectorWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::BVectorWell;
using DiagMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::DiagMatWell;
using OffDiatMatWell = typename MultisegmentWellEquations<Scalar,numWellEq,numEq>::OffDiagMatWell;
//! \brief Returns a reference to residual vector.
BVectorWell& residual()
{
return eqns_.resWell_;
}
//! \brief Returns a reference to B matrix.
OffDiatMatWell& B()
{
return eqns_.duneB_;
}
//! \brief Returns a reference to C matrix.
OffDiatMatWell& C()
{
return eqns_.duneC_;
}
//! \brief Returns a reference to D matrix.
DiagMatWell& D()
{
return eqns_.duneD_;
}
private:
MultisegmentWellEquations<Scalar,numWellEq,numEq>& eqns_; //!< Reference to equation system
};
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
const double rho,
const PrimaryVariables& primary_variables,
Equations& eqns1,
DeferredLogger& deferred_logger) const
{
static constexpr int Gas = BlackoilPhases::Vapour;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Water = BlackoilPhases::Aqua;
EvalWell control_eq(0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, 0.0);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = primary_variables.getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.stopppedOrZeroRateTarget(summaryState, well_state)) {
control_eq = primary_variables.getWQTotal();
} else if (well_.isInjector() ) {
// Find scaling factor to get injection rate,
const InjectorType injectorType = inj_controls.injector_type;
double scaling = 1.0;
const auto& pu = well_.phaseUsage();
switch (injectorType) {
case InjectorType::WATER:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Aqua]);
break;
}
case InjectorType::OIL:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Liquid]);
break;
}
case InjectorType::GAS:
{
scaling = well_.scalingFactor(pu.phase_pos[BlackoilPhases::Vapour]);
break;
}
default:
throw("Expected WATER, OIL or GAS as type for injectors " + well.name());
}
const EvalWell injection_rate = primary_variables.getWQTotal() / scaling;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
primary_variables.getBhp(),
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
WellAssemble(well_).assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
primary_variables.getBhp(),
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
// using control_eq to update the matrix and residuals
eqns.residual()[0][SPres] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[0][0][SPres][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePressureLoss(const int seg,
const int seg_upwind,
const EvalWell& accelerationPressureLoss,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] -= accelerationPressureLoss.value();
eqns.D()[seg][seg][SPres][SPres] -= accelerationPressureLoss.derivative(SPres + Indices::numEq);
eqns.D()[seg][seg][SPres][WQTotal] -= accelerationPressureLoss.derivative(WQTotal + Indices::numEq);
if constexpr (has_wfrac_variable) {
eqns.D()[seg][seg_upwind][SPres][WFrac] -= accelerationPressureLoss.derivative(WFrac + Indices::numEq);
}
if constexpr (has_gfrac_variable) {
eqns.D()[seg][seg_upwind][SPres][GFrac] -= accelerationPressureLoss.derivative(GFrac + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePressureEq(const int seg,
const int seg_upwind,
const int outlet_segment_index,
const EvalWell& pressure_equation,
const EvalWell& outlet_pressure,
Equations& eqns1,
bool wfrac,
bool gfrac) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] = pressure_equation.value();
eqns.D()[seg][seg][SPres][SPres] += pressure_equation.derivative(SPres + Indices::numEq);
eqns.D()[seg][seg][SPres][WQTotal] += pressure_equation.derivative(WQTotal + Indices::numEq);
if (wfrac) {
eqns.D()[seg][seg_upwind][SPres][WFrac] += pressure_equation.derivative(WFrac + Indices::numEq);
}
if (gfrac) {
eqns.D()[seg][seg_upwind][SPres][GFrac] += pressure_equation.derivative(GFrac + Indices::numEq);
}
// contribution from the outlet segment
eqns.residual()[seg][SPres] -= outlet_pressure.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[seg][outlet_segment_index][SPres][pv_idx] -= outlet_pressure.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleTrivialEq(const int seg,
const Scalar value,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][SPres] = value;
eqns.D()[seg][seg][SPres][WQTotal] = 1.;
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleAccumulationTerm(const int seg,
const int comp_idx,
const EvalWell& accumulation_term,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] += accumulation_term.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.D()[seg][seg][comp_idx][pv_idx] += accumulation_term.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleOutflowTerm(const int seg,
const int seg_upwind,
const int comp_idx,
const EvalWell& segment_rate,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] -= segment_rate.value();
eqns.D()[seg][seg][comp_idx][WQTotal] -= segment_rate.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
eqns.D()[seg][seg_upwind][comp_idx][WFrac] -= segment_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
eqns.D()[seg][seg_upwind][comp_idx][GFrac] -= segment_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assembleInflowTerm(const int seg,
const int inlet,
const int inlet_upwind,
const int comp_idx,
const EvalWell& inlet_rate,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
eqns.residual()[seg][comp_idx] += inlet_rate.value();
eqns.D()[seg][inlet][comp_idx][WQTotal] += inlet_rate.derivative(WQTotal + Indices::numEq);
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
eqns.D()[seg][inlet_upwind][comp_idx][WFrac] += inlet_rate.derivative(WFrac + Indices::numEq);
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
eqns.D()[seg][inlet_upwind][comp_idx][GFrac] += inlet_rate.derivative(GFrac + Indices::numEq);
}
// pressure derivative should be zero
}
template<class FluidSystem, class Indices, class Scalar>
void MultisegmentWellAssemble<FluidSystem,Indices,Scalar>::
assemblePerforationEq(const int seg,
const int cell_idx,
const int comp_idx,
const EvalWell& cq_s_effective,
Equations& eqns1) const
{
MultisegmentWellEquationAccess<Scalar,numWellEq,Indices::numEq> eqns(eqns1);
// subtract sum of phase fluxes in the well equations.
eqns.residual()[seg][comp_idx] += cq_s_effective.value();
// assemble the jacobians
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.C()[seg][cell_idx][pv_idx][comp_idx] -= cq_s_effective.derivative(pv_idx + Indices::numEq); // input in transformed matrix
// the index name for the D should be eq_idx / pv_idx
eqns.D()[seg][seg][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx + Indices::numEq);
}
for (int pv_idx = 0; pv_idx < Indices::numEq; ++pv_idx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.B()[seg][cell_idx][comp_idx][pv_idx] += cq_s_effective.derivative(pv_idx);
}
}
#define INSTANCE(...) \
template class MultisegmentWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>;
// One phase
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,0u,0u>)
INSTANCE(BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,true,0u,0u,0u>)
// Blackoil
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,false,1u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,0u,false,true,2u,0u>)
INSTANCE(BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
}