opm-simulators/opm/simulators/wells/StandardWellAssemble.cpp
Arne Morten Kvarving f720cc6dde added: StandardWellAssemble::assemblePerforationEq
extracted from StandardWell::assembleWellEqWithoutIterationImpl
2022-11-22 12:22:18 +01:00

252 lines
11 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
Copyright 2016 - 2017 IRIS AS.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/StandardWellAssemble.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/material/densead/DynamicEvaluation.hpp>
#include <opm/material/fluidsystems/BlackOilFluidSystem.hpp>
#include <opm/models/blackoil/blackoilindices.hh>
#include <opm/models/blackoil/blackoilonephaseindices.hh>
#include <opm/models/blackoil/blackoiltwophaseindices.hh>
#include <opm/simulators/wells/StandardWellEquations.hpp>
#include <opm/simulators/wells/WellAssemble.hpp>
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
#include <opm/simulators/wells/WellInterfaceFluidSystem.hpp>
namespace Opm {
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void
StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleControlEq(const WellState& well_state,
const GroupState& group_state,
const Schedule& schedule,
const SummaryState& summaryState,
const int numWellEq,
const EvalWell& wqTotal,
const EvalWell& bhp,
const std::function<EvalWell(int)>& getQs,
const double rho,
const int Bhp,
StandardWellEquations<Scalar,Indices::numEq>& eqns,
DeferredLogger& deferred_logger) const
{
static constexpr int Water = BlackoilPhases::Aqua;
static constexpr int Oil = BlackoilPhases::Liquid;
static constexpr int Gas = BlackoilPhases::Vapour;
EvalWell control_eq(numWellEq + Indices::numEq, 0.0);
const auto& well = well_.wellEcl();
auto getRates = [&]() {
std::vector<EvalWell> rates(3, EvalWell(numWellEq + Indices::numEq, 0.0));
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
rates[Water] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::waterCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
rates[Oil] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::oilCompIdx));
}
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
rates[Gas] = getQs(Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx));
}
return rates;
};
if (well_.wellIsStopped()) {
control_eq = wqTotal;
} else if (well_.isInjector()) {
// Find injection rate.
const EvalWell injection_rate = wqTotal;
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
const auto rates = getRates();
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
const auto& inj_controls = well.injectionControls(summaryState);
WellAssemble(well_).
assembleControlEqInj(well_state,
group_state,
schedule,
summaryState,
inj_controls,
bhp,
injection_rate,
bhp_from_thp,
control_eq,
deferred_logger);
} else {
// Find rates.
const auto rates = getRates();
// Setup function for evaluation of BHP from THP (used only if needed).
std::function<EvalWell()> bhp_from_thp = [&]() {
return WellBhpThpCalculator(well_).calculateBhpFromThp(well_state,
rates,
well,
summaryState,
rho,
deferred_logger);
};
// Call generic implementation.
const auto& prod_controls = well.productionControls(summaryState);
WellAssemble(well_).
assembleControlEqProd(well_state,
group_state,
schedule,
summaryState,
prod_controls,
bhp,
rates,
bhp_from_thp,
control_eq,
deferred_logger);
}
// using control_eq to update the matrix and residuals
// TODO: we should use a different index system for the well equations
eqns.resWell_[0][Bhp] = control_eq.value();
for (int pv_idx = 0; pv_idx < numWellEq; ++pv_idx) {
eqns.duneD_[0][0][Bhp][pv_idx] = control_eq.derivative(pv_idx + Indices::numEq);
}
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assembleInjectivityEq(const EvalWell& eq_pskin,
const EvalWell& eq_wat_vel,
const int pskin_index,
const int wat_vel_index,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const
{
eqns.resWell_[0][pskin_index] = eq_pskin.value();
eqns.resWell_[0][wat_vel_index] = eq_wat_vel.value();
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
eqns.duneD_[0][0][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx+Indices::numEq);
eqns.duneD_[0][0][pskin_index][pvIdx] = eq_pskin.derivative(pvIdx+Indices::numEq);
}
// the water velocity is impacted by the reservoir primary varaibles. It needs to enter matrix B
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.duneB_[0][cell_idx][wat_vel_index][pvIdx] = eq_wat_vel.derivative(pvIdx);
}
}
template<class FluidSystem, class Indices, class Scalar>
template<class EvalWell>
void StandardWellAssemble<FluidSystem,Indices,Scalar>::
assemblePerforationEq(const EvalWell& cq_s_effective,
const int componentIdx,
const int cell_idx,
const int numWellEq,
StandardWellEquations<Scalar,Indices::numEq>& eqns) const
{
// subtract sum of phase fluxes in the well equations.
eqns.resWell_[0][componentIdx] += cq_s_effective.value();
// assemble the jacobians
for (int pvIdx = 0; pvIdx < numWellEq; ++pvIdx) {
// also need to consider the efficiency factor when manipulating the jacobians.
eqns.duneC_[0][cell_idx][pvIdx][componentIdx] -= cq_s_effective.derivative(pvIdx+Indices::numEq); // intput in transformed matrix
eqns.duneD_[0][0][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx+Indices::numEq);
}
for (int pvIdx = 0; pvIdx < Indices::numEq; ++pvIdx) {
eqns.duneB_[0][cell_idx][componentIdx][pvIdx] += cq_s_effective.derivative(pvIdx);
}
}
#define INSTANCE(Dim,...) \
template class StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleControlEq(const WellState&, \
const GroupState&, \
const Schedule&, \
const SummaryState&, \
const int, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const std::function<DenseAd::Evaluation<double,-1,Dim>(int)>&, \
const double, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&, \
DeferredLogger&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assembleInjectivityEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const; \
template void \
StandardWellAssemble<BlackOilFluidSystem<double,BlackOilDefaultIndexTraits>,__VA_ARGS__,double>:: \
assemblePerforationEq(const DenseAd::Evaluation<double,-1,Dim>&, \
const int, \
const int, \
const int, \
StandardWellEquations<double,__VA_ARGS__::numEq>&) const;
// One phase
INSTANCE(4u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(5u, BlackOilOnePhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(9u, BlackOilOnePhaseIndices<0u,0u,0u,0u,false,false,0u,1u,5u>)
// Two phase
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,0u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,1u,0u>)
INSTANCE(6u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,false,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,1u,0u,false,true,0u,2u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,1u,false,false,0u,1u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,0u,0u>)
INSTANCE(7u, BlackOilTwoPhaseIndices<0u,0u,0u,0u,false,true,0u,2u,0u>)
INSTANCE(8u, BlackOilTwoPhaseIndices<0u,0u,2u,0u,false,false,0u,2u,0u>)
// Blackoil
INSTANCE(8u, BlackOilIndices<0u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,true,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,0u,false,true,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,1u,0u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,1u,0u,false,false,0u,0u>)
INSTANCE(9u, BlackOilIndices<0u,0u,0u,1u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<1u,0u,0u,0u,false,false,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,true,0u,0u>)
INSTANCE(10u, BlackOilIndices<0u,0u,0u,1u,false,false,1u,0u>)
}