opm-simulators/ebos/ecltransmissibility.hh

299 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::EclTransmissibility
*/
#ifndef EWOMS_ECL_TRANSMISSIBILITY_HH
#define EWOMS_ECL_TRANSMISSIBILITY_HH
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
#include <opm/grid/common/CartesianIndexMapper.hpp>
#include <opm/grid/LookUpData.hh>
#include <array>
#include <functional>
#include <map>
#include <cstdint>
#include <tuple>
#include <unordered_map>
#include <vector>
namespace Opm {
class KeywordLocation;
class EclipseState;
struct NNCdata;
class TransMult;
template<class Grid, class GridView, class ElementMapper, class CartesianIndexMapper, class Scalar>
class EclTransmissibility {
// Grid and world dimension
enum { dimWorld = GridView::dimensionworld };
public:
using DimMatrix = Dune::FieldMatrix<Scalar, dimWorld, dimWorld>;
using DimVector = Dune::FieldVector<Scalar, dimWorld>;
EclTransmissibility(const EclipseState& eclState,
const GridView& gridView,
const CartesianIndexMapper& cartMapper,
const Grid& grid,
std::function<std::array<double,dimWorld>(int)> centroids,
bool enableEnergy,
bool enableDiffusivity,
bool enableDispersivity);
/*!
* \brief Return the permeability for an element.
*/
const DimMatrix& permeability(unsigned elemIdx) const
{ return permeability_[elemIdx]; }
/*!
* \brief Return the transmissibility for the intersection between two elements.
*/
Scalar transmissibility(unsigned elemIdx1, unsigned elemIdx2) const;
/*!
* \brief Return the transmissibility for a given boundary segment.
*/
Scalar transmissibilityBoundary(unsigned elemIdx, unsigned boundaryFaceIdx) const;
/*!
* \brief Return the thermal "half transmissibility" for the intersection between two
* elements.
*
* The "half transmissibility" features all sub-expressions of the "thermal
* transmissibility" which can be precomputed, i.e. they are not dependent on the
* current solution:
*
* H_t = A * (n*d)/(d*d);
*
* where A is the area of the intersection between the inside and outside elements, n
* is the outer unit normal, and d is the distance between the center of the inside
* cell and the center of the intersection.
*/
Scalar thermalHalfTrans(unsigned insideElemIdx, unsigned outsideElemIdx) const;
Scalar thermalHalfTransBoundary(unsigned insideElemIdx, unsigned boundaryFaceIdx) const;
/*!
* \brief Return the diffusivity for the intersection between two elements.
*/
Scalar diffusivity(unsigned elemIdx1, unsigned elemIdx2) const;
/*!
* \brief Return the dispersivity for the intersection between two elements.
*/
Scalar dispersivity(unsigned elemIdx1, unsigned elemIdx2) const;
/*!
* \brief Actually compute the transmissibility over a face as a pre-compute step.
*
* This code actually uses the direction specific "centroids" of
* each element. These "centroids" are _not_ the identical
* barycenter of the element, but the middle of the centers of the
* faces of the logical Cartesian cells, i.e., the centers of the
* faces of the reference elements. We do things this way because
* the barycenter of the element can be located outside of the
* element for sufficiently "ugly" (i.e., thin and "non-flat")
* elements which in turn leads to quite wrong
* permeabilities. This approach is probably not always correct
* either but at least it seems to be much better.
*/
void finishInit(const std::function<unsigned int(unsigned int)>& map = {})
{
this->update(true, map, /*applyNncMultRegT = */ true);
}
/*!
* \brief Compute all transmissibilities
*
* \param[in] global Whether or not to call \c update() on all
* processes. Also, this updates the "thermal half
* transmissibilities" if energy is enabled.
*
* \param[in] map Undocumented.
*
* \param[in] applyNncMultRegT Whether or not to apply regional
* multipliers to explicit NNCs. Explicit NNCs are those entered
* directly in the input data, e.g., through the NNC/EDITNNC/EDITNNCR
* keywords, or the result of generating connections to or within
* numerical aquifers. Default value: \c false, meaning do not apply
* regional multipliers to explicit NNCs.
*/
void update(bool global, const std::function<unsigned int(unsigned int)>& map = {}, bool applyNncMultRegT = false);
protected:
void updateFromEclState_(bool global);
void removeNonCartesianTransmissibilities_(bool removeAll);
/// \brief Apply the Multipliers for the case PINCH(4)==TOPBOT
///
/// \param pinchTop Whether PINCH(5) is TOP, otherwise ALL is assumed.
void applyAllZMultipliers_(Scalar& trans,
unsigned insideFaceIdx,
unsigned outsideFaceIdx,
unsigned insideCartElemIdx,
unsigned outsideCartElemIdx,
const TransMult& transMult,
const std::array<int, dimWorld>& cartDims,
bool pinchTop);
/// \brief Creates TRANS{XYZ} arrays for modification by FieldProps data
///
/// \param is_tran Whether TRAN{XYZ} will be modified. If entry is false the array will be empty
/// \returns an array of vector (TRANX, TRANY, TRANZ}
std::array<std::vector<double>,3>
createTransmissibilityArrays_(const std::array<bool,3>& is_tran);
/// \brief overwrites calculated transmissibilities
///
/// \param is_tran Whether TRAN{XYZ} have been modified.
/// \param trans Arrays with modified transmissibilities TRAN{XYZ}
void resetTransmissibilityFromArrays_(const std::array<bool,3>& is_tran,
const std::array<std::vector<double>,3>& trans);
template <class Intersection>
void computeFaceProperties(const Intersection& intersection,
const int,
const int,
const int,
const int,
DimVector& faceCenterInside,
DimVector& faceCenterOutside,
DimVector& faceAreaNormal,
/*isCpGrid=*/std::false_type) const;
template <class Intersection>
void computeFaceProperties(const Intersection& intersection,
const int insideElemIdx,
const int insideFaceIdx,
const int outsideElemIdx,
const int outsideFaceIdx,
DimVector& faceCenterInside,
DimVector& faceCenterOutside,
DimVector& faceAreaNormal,
/*isCpGrid=*/std::true_type) const;
/*
* \brief Applies additional transmissibilities specified via NNC keyword.
*
* Applies only those NNC that are actually represented by the grid. These may
* NNCs due to faults or NNCs that are actually neighbours. In both cases that
* specified transmissibilities (scaled by EDITNNC) will be added to the already
* existing models.
*
* \param cartesianToCompressed Vector containing the compressed index (or -1 for inactive
* cells) as the element at the cartesian index.
* \return Nothing.
*/
void applyNncToGridTrans_(const std::unordered_map<std::size_t,int>& cartesianToCompressed);
/// \brief Multiplies the grid transmissibilities according to EDITNNC.
void applyEditNncToGridTrans_(const std::unordered_map<std::size_t,int>& globalToLocal);
/// \brief Resets the grid transmissibilities according to EDITNNCR.
void applyEditNncrToGridTrans_(const std::unordered_map<std::size_t,int>& globalToLocal);
void applyNncMultreg_(const std::unordered_map<std::size_t,int>& globalToLocal);
void applyEditNncToGridTransHelper_(const std::unordered_map<std::size_t,int>& globalToLocal,
const std::string& keyword, const std::vector<NNCdata>& nncs,
const std::function<KeywordLocation(const NNCdata&)>& getLocation,
const std::function<void(double&, const double&)>& apply);
void extractPermeability_();
void extractPermeability_(const std::function<unsigned int(unsigned int)>& map);
void extractPorosity_();
void extractDispersion_();
void computeHalfTrans_(Scalar& halfTrans,
const DimVector& areaNormal,
int faceIdx, // in the reference element that contains the intersection
const DimVector& distance,
const DimMatrix& perm) const;
void computeHalfDiffusivity_(Scalar& halfDiff,
const DimVector& areaNormal,
const DimVector& distance,
const Scalar& poro) const;
DimVector distanceVector_(const DimVector& center,
int faceIdx, // in the reference element that contains the intersection
unsigned elemIdx,
const std::array<std::vector<DimVector>, dimWorld>& axisCentroids) const;
void applyMultipliers_(Scalar& trans,
unsigned faceIdx,
unsigned cartElemIdx,
const TransMult& transMult) const;
void applyNtg_(Scalar& trans,
unsigned faceIdx,
unsigned elemIdx,
const std::vector<double>& ntg) const;
std::vector<DimMatrix> permeability_;
std::vector<Scalar> porosity_;
std::vector<Scalar> dispersion_;
std::unordered_map<std::uint64_t, Scalar> trans_;
const EclipseState& eclState_;
const GridView& gridView_;
const CartesianIndexMapper& cartMapper_;
const Grid& grid_;
std::function<std::array<double,dimWorld>(int)> centroids_;
Scalar transmissibilityThreshold_;
std::map<std::pair<unsigned, unsigned>, Scalar> transBoundary_;
std::map<std::pair<unsigned, unsigned>, Scalar> thermalHalfTransBoundary_;
bool enableEnergy_;
bool enableDiffusivity_;
bool enableDispersivity_;
std::unordered_map<std::uint64_t, Scalar> thermalHalfTrans_; //NB this is based on direction map size is ca 2*trans_ (diffusivity_)
std::unordered_map<std::uint64_t, Scalar> diffusivity_;
std::unordered_map<std::uint64_t, Scalar> dispersivity_;
const LookUpData<Grid,GridView> lookUpData_;
const LookUpCartesianData<Grid,GridView> lookUpCartesianData_;
};
namespace details {
std::uint64_t isId(std::uint32_t elemIdx1, std::uint32_t elemIdx2);
std::pair<std::uint32_t, std::uint32_t> isIdReverse(const std::uint64_t& id);
std::uint64_t directionalIsId(std::uint32_t elemIdx1, std::uint32_t elemIdx2);
}
} // namespace Opm
#endif