opm-simulators/opm/simulators/wells/WellState.cpp
Bård Skaflestad 77fe28979e Calculate Segment Phase and Mixture Densities for Summary Output
This commit adds logic and backing storage in the SegmentState to
provide the segment level summary vectors

  - SDENx -- Phase density of phase 'x' (O, G, W)
  - SDENM -- Mixture density without flowing fraction exponents
  - SMDEN -- Mixture density with flowing fraction exponents

We defer the calculation of SDENM and, especially, SMDEN, to the
MultisegmentWellSegments class since this class maintains the
current flowing fractions.
2023-07-05 11:05:26 +02:00

1014 lines
39 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/WellState.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/input/eclipse/Schedule/MSW/WellSegments.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/Well/Well.hpp>
#include <opm/input/eclipse/Schedule/Well/WellConnections.hpp>
#include <opm/simulators/utils/ParallelCommunication.hpp>
#include <opm/simulators/wells/ParallelWellInfo.hpp>
#include <opm/grid/common/p2pcommunicator.hh>
#include <opm/output/data/Wells.hpp>
#include <algorithm>
#include <cassert>
#include <numeric>
#include <set>
#include <stdexcept>
#include <vector>
#include <fmt/format.h>
namespace {
using P2PCommunicatorType = Dune::Point2PointCommunicator<Dune::SimpleMessageBuffer>;
using MessageBufferType = P2PCommunicatorType::MessageBufferType;
class PackUnpackXConn : public P2PCommunicatorType::DataHandleInterface
{
public:
using XConn = std::vector<Opm::data::Connection>;
explicit PackUnpackXConn(const bool isOwner,
const XConn& local,
XConn& global);
// Pack all data associated with link.
void pack(const int link, MessageBufferType& buffer);
// Unpack all data associated with link.
void unpack([[maybe_unused]] const int link,
MessageBufferType& buffer);
private:
const XConn& local_;
XConn& global_;
};
PackUnpackXConn::PackUnpackXConn(const bool isOwner,
const XConn& local,
XConn& global)
: local_ (local)
, global_(global)
{
if (! isOwner) {
return;
}
this->global_.insert(this->global_.end(),
this->local_.begin(),
this->local_.end());
}
void PackUnpackXConn::pack(const int link,
MessageBufferType& buffer)
{
// We should only get one link
if (link != 0) {
throw std::logic_error {
"link in pack() does not match expected value 0"
};
}
// Write all local connection results
{
const auto nconn = this->local_.size();
buffer.write(nconn);
}
for (const auto& conn : this->local_) {
conn.write(buffer);
}
}
void PackUnpackXConn::unpack([[maybe_unused]] const int link,
MessageBufferType& buffer)
{
const auto nconn = [this, &buffer]()
{
auto nc = 0 * this->local_.size();
buffer.read(nc);
return nc;
}();
this->global_.reserve(this->global_.size() + nconn);
for (auto conn = 0*nconn; conn < nconn; ++conn) {
this->global_.emplace_back().read(buffer);
}
}
} // Anonymous namespace
namespace Opm {
WellState::WellState(const ParallelWellInfo& pinfo)
: phase_usage_{}
{
wells_.add("test4",
SingleWellState{"dummy", pinfo, false, 0.0, {}, phase_usage_, 0.0});
}
WellState WellState::serializationTestObject(const ParallelWellInfo& pinfo)
{
WellState result(PhaseUsage{});
result.alq_state = ALQState::serializationTestObject();
result.well_rates = {{"test2", {true, {1.0}}}, {"test3", {false, {2.0}}}};
result.wells_.add("test4", SingleWellState::serializationTestObject(pinfo));
return result;
}
void WellState::base_init(const std::vector<double>& cellPressures,
const std::vector<Well>& wells_ecl,
const std::vector<std::reference_wrapper<ParallelWellInfo>>& parallel_well_info,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// clear old name mapping
this->wells_.clear();
{
// const int nw = wells->number_of_wells;
const int nw = wells_ecl.size();
// const int np = wells->number_of_phases;
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
// Initialize bhp(), thp(), wellRates(), temperature().
initSingleWell(cellPressures, well, well_perf_data[w], parallel_well_info[w], summary_state);
}
}
}
void WellState::initSingleProducer(const Well& well,
const ParallelWellInfo& well_info,
double pressure_first_connection,
const std::vector<PerforationData>& well_perf_data,
const SummaryState& summary_state) {
const auto& pu = this->phase_usage_;
const double temp = 273.15 + 15.56;
auto& ws = this->wells_.add(well.name(),
SingleWellState{well.name(),
well_info,
true,
pressure_first_connection,
well_perf_data,
pu,
temp});
// the rest of the code needs to executed even if ws.perf_data is empty
// as this does not say anything for the whole well if it is distributed.
// Hence never ever return here!
if (well.getStatus() == Well::Status::OPEN) {
ws.status = Well::Status::OPEN;
}
ws.update_producer_targets(well, summary_state);
}
void WellState::initSingleInjector(const Well& well,
const ParallelWellInfo& well_info,
double pressure_first_connection,
const std::vector<PerforationData>& well_perf_data,
const SummaryState& summary_state) {
const auto& pu = this->phase_usage_;
const double temp = well.temperature();
auto& ws = this->wells_.add(well.name(), SingleWellState{well.name(),
well_info,
false,
pressure_first_connection,
well_perf_data,
pu,
temp});
// the rest of the code needs to executed even if ws.perf_data is empty
// as this does not say anything for the whole well if it is distributed.
// Hence never ever return here!
if (well.getStatus() == Well::Status::OPEN) {
ws.status = Well::Status::OPEN;
}
ws.update_injector_targets(well, summary_state);
}
void WellState::initSingleWell(const std::vector<double>& cellPressures,
const Well& well,
const std::vector<PerforationData>& well_perf_data,
const ParallelWellInfo& well_info,
const SummaryState& summary_state)
{
double pressure_first_connection = -1;
if (!well_perf_data.empty())
pressure_first_connection = cellPressures[well_perf_data[0].cell_index];
pressure_first_connection = well_info.broadcastFirstPerforationValue(pressure_first_connection);
if (well.isInjector()) {
this->initSingleInjector(well, well_info, pressure_first_connection,
well_perf_data, summary_state);
} else {
this->initSingleProducer(well, well_info, pressure_first_connection,
well_perf_data, summary_state);
}
}
void WellState::init(const std::vector<double>& cellPressures,
const Schedule& schedule,
const std::vector<Well>& wells_ecl,
const std::vector<std::reference_wrapper<ParallelWellInfo>>& parallel_well_info,
const int report_step,
const WellState* prevState,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
// call init on base class
this->base_init(cellPressures, wells_ecl, parallel_well_info,
well_perf_data, summary_state);
this->global_well_info = std::make_optional<GlobalWellInfo>(schedule,
report_step,
wells_ecl);
for (const auto& wname : schedule.wellNames(report_step))
{
well_rates.insert({wname, std::make_pair(false, std::vector<double>(this->numPhases()))});
}
for (const auto& winfo: parallel_well_info)
{
well_rates[winfo.get().name()].first = winfo.get().isOwner();
}
const int nw = wells_ecl.size();
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
{
const auto& wg_events = schedule[report_step].wellgroup_events();
for (const auto& ecl_well : wells_ecl) {
const auto& wname = ecl_well.name();
if (wg_events.has(wname))
this->well(wname).events = wg_events.at(wname);
}
}
for (int w = 0; w < nw; ++w) {
// Initialize perfphaserates_ to well
// rates divided by the number of perforations.
const auto& ecl_well = wells_ecl[w];
auto& ws = this->well(w);
auto& perf_data = ws.perf_data;
const int num_perf_this_well = perf_data.size();
const int global_num_perf_this_well = ecl_well.getConnections().num_open();
for (int perf = 0; perf < num_perf_this_well; ++perf) {
if (wells_ecl[w].getStatus() == Well::Status::OPEN) {
for (int p = 0; p < this->numPhases(); ++p) {
perf_data.phase_rates[this->numPhases()*perf + p] = ws.surface_rates[p] / double(global_num_perf_this_well);
}
}
perf_data.pressure[perf] = cellPressures[well_perf_data[w][perf].cell_index];
}
}
for (int w = 0; w < nw; ++w) {
auto& ws = this->well(w);
if (wells_ecl[w].isProducer()) {
const auto controls = wells_ecl[w].productionControls(summary_state);
if (controls.cmode == Well::ProducerCMode::GRUP && !wells_ecl[w].isAvailableForGroupControl()) {
ws.production_cmode = Well::ProducerCMode::BHP; // wells always has a BHP control
} else {
ws.production_cmode = controls.cmode;
}
}
else {
const auto controls = wells_ecl[w].injectionControls(summary_state);
if (controls.cmode == Well::InjectorCMode::GRUP && !wells_ecl[w].isAvailableForGroupControl()) {
ws.injection_cmode = Well::InjectorCMode::BHP; // wells always has a BHP control
} else {
ws.injection_cmode = controls.cmode;
}
}
}
for (int w = 0; w < nw; ++w) {
switch (wells_ecl[w].getStatus()) {
case Well::Status::SHUT:
this->shutWell(w);
break;
case Well::Status::STOP:
this->stopWell(w);
break;
default:
this->openWell(w);
break;
}
}
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if (prevState && prevState->size() > 0) {
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT) {
continue;
}
auto& new_well = this->well(w);
const auto& old_index = prevState->index(well.name());
if (old_index.has_value()) {
const auto& prev_well = prevState->well(old_index.value());
new_well.init_timestep(prev_well);
if (prev_well.status == Well::Status::SHUT) {
// Well was shut in previous state, do not use its values.
continue;
}
if (new_well.producer != prev_well.producer)
// Well changed to/from injector from/to producer, do not use its privious values.
continue;
// If new target is set using WCONPROD, WCONINJE etc. we use the new control
if (!new_well.events.hasEvent(WellState::event_mask)) {
new_well.injection_cmode = prev_well.injection_cmode;
new_well.production_cmode = prev_well.production_cmode;
}
new_well.surface_rates = prev_well.surface_rates;
new_well.reservoir_rates = prev_well.reservoir_rates;
new_well.well_potentials = prev_well.well_potentials;
// perfPhaseRates
const int num_perf_old_well = prev_well.perf_data.size();
const int num_perf_this_well = new_well.perf_data.size();
const bool global_num_perf_same = (num_perf_this_well == num_perf_old_well);
// copy perforation rates when the number of
// perforations is equal, otherwise initialize
// perfphaserates to well rates divided by the
// number of perforations.
// TODO: we might still need the values from the prev_well if the connection structure changes
if (global_num_perf_same)
{
auto& perf_data = new_well.perf_data;
const auto& prev_perf_data = prev_well.perf_data;
perf_data.try_assign( prev_perf_data );
} else {
const int global_num_perf_this_well = well.getConnections().num_open();
auto& perf_data = new_well.perf_data;
auto& target_rates = perf_data.phase_rates;
for (int perf_index = 0; perf_index < num_perf_this_well; perf_index++) {
for (int p = 0; p < np; ++p) {
target_rates[perf_index*np + p] = new_well.surface_rates[p] / double(global_num_perf_this_well);
}
}
}
// Productivity index.
new_well.productivity_index = prev_well.productivity_index;
}
// If in the new step, there is no THP related
// target/limit anymore, its thp value should be set to
// zero.
const bool has_thp = well.isInjector()
? well.injectionControls (summary_state).hasControl(Well::InjectorCMode::THP)
: well.productionControls(summary_state).hasControl(Well::ProducerCMode::THP);
if (!has_thp) {
new_well.thp = 0;
}
}
}
updateWellsDefaultALQ(wells_ecl);
}
void WellState::resize(const std::vector<Well>& wells_ecl,
const std::vector<std::reference_wrapper<ParallelWellInfo>>& parallel_well_info,
const Schedule& schedule,
const bool handle_ms_well,
const size_t numCells,
const std::vector<std::vector<PerforationData>>& well_perf_data,
const SummaryState& summary_state)
{
const std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
init(tmp, schedule, wells_ecl, parallel_well_info, 0, nullptr, well_perf_data, summary_state);
if (handle_ms_well) {
initWellStateMSWell(wells_ecl, nullptr);
}
}
const std::vector<double>&
WellState::currentWellRates(const std::string& wellName) const
{
auto it = well_rates.find(wellName);
if (it == well_rates.end())
OPM_THROW(std::logic_error,
"Could not find any rates for well " + wellName);
return it->second.second;
}
template<class Communication>
void WellState::gatherVectorsOnRoot(const std::vector<data::Connection>& from_connections,
std::vector<data::Connection>& to_connections,
const Communication& comm) const
{
auto send = std::set<int>{};
auto recv = std::set<int>{};
const auto isOwner = comm.rank() == 0;
if (isOwner) {
for (auto other = 0*comm.size() + 1; other < comm.size(); ++other) {
recv.insert(other);
}
}
else {
send.insert(0);
}
auto toOwnerComm = P2PCommunicatorType{ comm };
toOwnerComm.insertRequest(send, recv);
PackUnpackXConn lineariser { isOwner, from_connections, to_connections };
toOwnerComm.exchange(lineariser);
}
data::Wells
WellState::report(const int* globalCellIdxMap,
const std::function<bool(const int)>& wasDynamicallyClosed) const
{
if (this->numWells() == 0) {
return {};
}
using rt = data::Rates::opt;
const auto& pu = this->phaseUsage();
data::Wells res;
for (std::size_t well_index = 0; well_index < this->size(); ++well_index) {
const auto& ws = this->well(well_index);
if ((ws.status == Well::Status::SHUT) && !wasDynamicallyClosed(well_index))
{
continue;
}
const auto& reservoir_rates = ws.reservoir_rates;
const auto& well_potentials = ws.well_potentials;
const auto& wpi = ws.productivity_index;
const auto& wv = ws.surface_rates;
const auto& wname = this->name(well_index);
auto dummyWell = data::Well{};
auto& well = ws.parallel_info.get().isOwner() ? res[wname] : dummyWell;
well.bhp = ws.bhp;
well.thp = ws.thp;
well.temperature = ws.temperature;
if (pu.phase_used[BlackoilPhases::Aqua]) {
well.rates.set(rt::wat, wv[ pu.phase_pos[BlackoilPhases::Aqua] ] );
well.rates.set(rt::reservoir_water, reservoir_rates[pu.phase_pos[BlackoilPhases::Aqua]]);
well.rates.set(rt::productivity_index_water, wpi[pu.phase_pos[BlackoilPhases::Aqua]]);
well.rates.set(rt::well_potential_water, well_potentials[pu.phase_pos[BlackoilPhases::Aqua]]);
}
if (pu.phase_used[BlackoilPhases::Liquid]) {
well.rates.set(rt::oil, wv[ pu.phase_pos[BlackoilPhases::Liquid] ] );
well.rates.set(rt::reservoir_oil, reservoir_rates[pu.phase_pos[BlackoilPhases::Liquid]]);
well.rates.set(rt::productivity_index_oil, wpi[pu.phase_pos[BlackoilPhases::Liquid]]);
well.rates.set(rt::well_potential_oil, well_potentials[pu.phase_pos[BlackoilPhases::Liquid]]);
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
well.rates.set(rt::gas, wv[ pu.phase_pos[BlackoilPhases::Vapour] ] );
well.rates.set(rt::reservoir_gas, reservoir_rates[pu.phase_pos[BlackoilPhases::Vapour]]);
well.rates.set(rt::productivity_index_gas, wpi[pu.phase_pos[BlackoilPhases::Vapour]]);
well.rates.set(rt::well_potential_gas, well_potentials[pu.phase_pos[BlackoilPhases::Vapour]]);
}
if (pu.has_solvent || pu.has_zFraction) {
well.rates.set(rt::solvent, ws.sum_solvent_rates());
}
if (pu.has_polymer) {
well.rates.set(rt::polymer, ws.sum_polymer_rates());
}
if (pu.has_brine) {
well.rates.set(rt::brine, ws.sum_brine_rates());
}
if (ws.producer) {
well.rates.set(rt::alq, getALQ(wname));
}
else {
well.rates.set(rt::alq, 0.0);
}
well.rates.set(rt::dissolved_gas,
ws.phase_mixing_rates[ws.dissolved_gas] +
ws.phase_mixing_rates[ws.dissolved_gas_in_water]);
well.rates.set(rt::vaporized_oil, ws.phase_mixing_rates[ws.vaporized_oil]);
well.rates.set(rt::vaporized_water, ws.phase_mixing_rates[ws.vaporized_water]);
{
auto& curr = well.current_control;
curr.isProducer = ws.producer;
curr.prod = ws.production_cmode;
curr.inj = ws.injection_cmode;
}
const auto& pwinfo = ws.parallel_info.get();
if (pwinfo.communication().size() == 1) {
reportConnections(well.connections, pu, well_index, globalCellIdxMap);
}
else {
std::vector<data::Connection> connections;
reportConnections(connections, pu, well_index, globalCellIdxMap);
gatherVectorsOnRoot(connections, well.connections, pwinfo.communication());
}
const auto nseg = ws.segments.size();
for (auto seg_ix = 0*nseg; seg_ix < nseg; ++seg_ix) {
const auto seg_no = ws.segments.segment_number()[seg_ix];
well.segments[seg_no] = this->reportSegmentResults(well_index, seg_ix, seg_no);
}
}
return res;
}
void WellState::reportConnections(std::vector<data::Connection>& connections,
const PhaseUsage &pu,
std::size_t well_index,
const int* globalCellIdxMap) const
{
using rt = data::Rates::opt;
const auto& perf_data = this->well(well_index).perf_data;
const int num_perf_well = perf_data.size();
connections.resize(num_perf_well);
const auto& perf_rates = perf_data.rates;
const auto& perf_pressure = perf_data.pressure;
for (int i = 0; i < num_perf_well; ++i) {
const auto active_index = perf_data.cell_index[i];
auto& connection = connections[ i ];
connection.index = globalCellIdxMap[active_index];
connection.pressure = perf_pressure[i];
connection.reservoir_rate = perf_rates[i];
connection.trans_factor = perf_data.connection_transmissibility_factor[i];
}
const int np = pu.num_phases;
std::vector< rt > phs( np );
std::vector<rt> pi(np);
if (pu.phase_used[Water]) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
pi .at( pu.phase_pos[Water] ) = rt::productivity_index_water;
}
if (pu.phase_used[Oil]) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
pi .at( pu.phase_pos[Oil] ) = rt::productivity_index_oil;
}
if (pu.phase_used[Gas]) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
pi .at( pu.phase_pos[Gas] ) = rt::productivity_index_gas;
}
size_t local_conn_index = 0;
for (auto& comp : connections) {
const auto * rates = &perf_data.phase_rates[np * local_conn_index];
const auto * connPI = &perf_data.prod_index[np * local_conn_index];
for (int i = 0; i < np; ++i) {
comp.rates.set( phs[ i ], rates[i] );
comp.rates.set( pi [ i ], connPI[i] );
}
if (pu.has_polymer) {
const auto& perf_polymer_rate = perf_data.polymer_rates;
comp.rates.set( rt::polymer, perf_polymer_rate[local_conn_index]);
}
if (pu.has_brine) {
const auto& perf_brine_rate = perf_data.brine_rates;
comp.rates.set( rt::brine, perf_brine_rate[local_conn_index]);
}
if (pu.has_solvent) {
const auto& perf_solvent_rate = perf_data.solvent_rates;
comp.rates.set( rt::solvent, perf_solvent_rate[local_conn_index] );
}
++local_conn_index;
}
}
void WellState::initWellStateMSWell(const std::vector<Well>& wells_ecl,
const WellState* prev_well_state)
{
// still using the order in wells
const int nw = wells_ecl.size();
if (nw == 0) {
return;
}
const auto& pu = this->phaseUsage();
const int np = pu.num_phases;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const auto& well_ecl = wells_ecl[w];
auto& ws = this->well(w);
if (well_ecl.isMultiSegment()) {
const WellSegments& segment_set = well_ecl.getSegments();
// assuming the order of the perforations in well_ecl is the same with Wells
const WellConnections& completion_set = well_ecl.getConnections();
// number of segment for this single well
ws.segments = SegmentState{np, segment_set};
const int well_nseg = segment_set.size();
int n_activeperf = 0;
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (size_t perf = 0; perf < completion_set.size(); ++perf) {
const Connection& connection = completion_set.get(perf);
if (connection.state() == Connection::State::OPEN) {
const int segment_index = segment_set.segmentNumberToIndex(connection.segment());
if (segment_index == -1) {
OPM_THROW(std::logic_error,
fmt::format("COMPSEGS: Well {} has connection in cell {}, {}, {} "
"without associated segment.", well_ecl.name(),
connection.getI() + 1 , connection.getJ() + 1,
connection.getK() + 1 ));
}
segment_perforations[segment_index].push_back(n_activeperf);
n_activeperf++;
}
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
auto& perf_data = ws.perf_data;
// for the seg_rates_, now it becomes a recursive solution procedure.
if (pu.phase_used[Gas]) {
auto& perf_rates = perf_data.phase_rates;
const int gaspos = pu.phase_pos[Gas];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < n_activeperf; perf++)
perf_rates[perf*np + gaspos] *= 100;
}
const auto& perf_rates = perf_data.phase_rates;
std::vector<double> perforation_rates(perf_rates.begin(), perf_rates.end());
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, ws.segments.rates);
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
auto& segment_pressure = ws.segments.pressure;
segment_pressure[0] = ws.bhp;
const auto& perf_press = perf_data.pressure;
for (int seg = 1; seg < well_nseg; ++seg) {
if (!segment_perforations[seg].empty()) {
const int first_perf = segment_perforations[seg][0];
segment_pressure[seg] = perf_press[first_perf];
} else {
// seg_press_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
segment_pressure[seg] = segment_pressure[segment_set.segmentNumberToIndex(outlet_seg)];
}
}
}
}
}
if (prev_well_state) {
for (int w = 0; w < nw; ++w) {
const Well& well = wells_ecl[w];
if (well.getStatus() == Well::Status::SHUT)
continue;
if (!well.isMultiSegment())
continue;
const auto& wname = well.name();
if (prev_well_state->has(wname)) {
auto& ws = this->well(w);
const auto& prev_ws = prev_well_state->well(wname);
if (prev_ws.status == Well::Status::SHUT) {
continue;
}
// we do not copy the segment information if the number of segments have changed
// safer way should be to check the relevant Event
if (ws.segments.size() == prev_ws.segments.size()) {
ws.segments = prev_ws.segments;
}
}
}
}
}
void
WellState::calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets,
const std::vector<std::vector<int>>& segment_perforations,
const std::vector<double>& perforation_rates,
const int np, const int segment,
std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
void WellState::stopWell(int well_index)
{
auto& ws = this->well(well_index);
ws.stop();
}
void WellState::openWell(int well_index)
{
auto& ws = this->well(well_index);
ws.open();
}
void WellState::shutWell(int well_index)
{
auto& ws = this->well(well_index);
ws.shut();
}
void WellState::updateStatus(int well_index, WellStatus status)
{
auto& ws = this->well(well_index);
ws.updateStatus(status);
}
template<class Comm>
void WellState::communicateGroupRates(const Comm& comm)
{
// Compute the size of the data.
std::size_t sz = 0;
for (const auto& [_, owner_rates] : this->well_rates) {
(void)_;
const auto& [__, rates] = owner_rates;
(void)__;
sz += rates.size();
}
sz += this->alq_state.pack_size();
// Make a vector and collect all data into it.
std::vector<double> data(sz);
std::size_t pos = 0;
for (const auto& [_, owner_rates] : this->well_rates) {
(void)_;
const auto& [owner, rates] = owner_rates;
for (const auto& value : rates) {
if (owner)
data[pos++] = value;
else
data[pos++] = 0;
}
}
pos += this->alq_state.pack_data(&data[pos]);
assert(pos == sz);
// Communicate it with a single sum() call.
comm.sum(data.data(), data.size());
pos = 0;
for (auto& [_, owner_rates] : this->well_rates) {
(void)_;
auto& [__, rates] = owner_rates;
(void)__;
for (auto& value : rates)
value = data[pos++];
}
pos += this->alq_state.unpack_data(&data[pos]);
assert(pos == sz);
}
template<class Comm>
void WellState::updateGlobalIsGrup(const Comm& comm)
{
this->global_well_info.value().clear();
for (std::size_t well_index = 0; well_index < this->size(); well_index++) {
const auto& ws = this->well(well_index);
if (ws.producer)
this->global_well_info.value().update_producer(well_index, ws.status, ws.production_cmode);
else
this->global_well_info.value().update_injector(well_index, ws.status, ws.injection_cmode);
}
this->global_well_info.value().communicate(comm);
}
data::Segment
WellState::reportSegmentResults(const int well_id,
const int seg_ix,
const int seg_no) const
{
using PhaseQuant = data::SegmentPhaseQuantity::Item;
using PhaseDensity = data::SegmentPhaseDensity::Item;
const auto& segments = this->well(well_id).segments;
if (segments.empty()) {
return {};
}
auto seg_res = data::Segment{};
{
using Value = data::SegmentPressures::Value;
auto& segpress = seg_res.pressures;
segpress[Value::Pressure] = segments.pressure[seg_ix];
segpress[Value::PDrop] = segments.pressure_drop(seg_ix);
segpress[Value::PDropHydrostatic] = segments.pressure_drop_hydrostatic[seg_ix];
segpress[Value::PDropFriction] = segments.pressure_drop_friction[seg_ix];
segpress[Value::PDropAccel] = segments.pressure_drop_accel[seg_ix];
}
const auto& pu = this->phaseUsage();
const auto* rate = &segments.rates[seg_ix * pu.num_phases];
const auto* resv = &segments.phase_resv_rates[seg_ix * pu.num_phases];
const auto* velocity = &segments.phase_velocity[seg_ix * pu.num_phases];
const auto* holdup = &segments.phase_holdup[seg_ix * pu.num_phases];
const auto* viscosity = &segments.phase_viscosity[seg_ix * pu.num_phases];
const auto* density = &segments.phase_density[seg_ix * (pu.num_phases + 2)]; // +2 for mixture densities
if (pu.phase_used[Water]) {
const auto iw = pu.phase_pos[Water];
seg_res.rates.set(data::Rates::opt::wat, rate[iw]);
seg_res.rates.set(data::Rates::opt::reservoir_water, resv[iw]);
seg_res.velocity.set(PhaseQuant::Water, velocity[iw]);
seg_res.holdup.set(PhaseQuant::Water, holdup[iw]);
seg_res.viscosity.set(PhaseQuant::Water, viscosity[iw]);
seg_res.density.set(PhaseDensity::Water, density[iw]);
}
if (pu.phase_used[Oil]) {
const auto io = pu.phase_pos[Oil];
seg_res.rates.set(data::Rates::opt::oil, rate[io]);
seg_res.rates.set(data::Rates::opt::vaporized_oil, segments.vaporized_oil_rate[seg_ix]);
seg_res.rates.set(data::Rates::opt::reservoir_oil, resv[io]);
seg_res.velocity.set(PhaseQuant::Oil, velocity[io]);
seg_res.holdup.set(PhaseQuant::Oil, holdup[io]);
seg_res.viscosity.set(PhaseQuant::Oil, viscosity[io]);
seg_res.density.set(PhaseDensity::Oil, density[io]);
}
if (pu.phase_used[Gas]) {
const auto ig = pu.phase_pos[Gas];
seg_res.rates.set(data::Rates::opt::gas, rate[ig]);
seg_res.rates.set(data::Rates::opt::dissolved_gas, segments.dissolved_gas_rate[seg_ix]);
seg_res.rates.set(data::Rates::opt::reservoir_gas, resv[ig]);
seg_res.velocity.set(PhaseQuant::Gas, velocity[ig]);
seg_res.holdup.set(PhaseQuant::Gas, holdup[ig]);
seg_res.viscosity.set(PhaseQuant::Gas, viscosity[ig]);
seg_res.density.set(PhaseDensity::Gas, density[ig]);
}
seg_res.segNumber = seg_no;
// Recall: The mixture density *without* exponents is stored at offset
// 'num_phases' and the mixture density *with* exponents is stored at
// offset 'num_phases + 1'.
seg_res.density.set(PhaseDensity::Mixture, density[pu.num_phases]);
seg_res.density.set(PhaseDensity::MixtureWithExponents, density[pu.num_phases + 1]);
return seg_res;
}
bool WellState::wellIsOwned(std::size_t well_index,
[[maybe_unused]] const std::string& wellName) const
{
const auto& well_info = this->parallelWellInfo(well_index);
assert(well_info.name() == wellName);
return well_info.isOwner();
}
bool WellState::wellIsOwned(const std::string& wellName) const
{
const auto& well_index = this->index(wellName);
if (!well_index.has_value()) {
OPM_THROW(std::logic_error,
fmt::format("Could not find well {} in well map", wellName));
}
return wellIsOwned(well_index.value(), wellName);
}
void WellState::updateWellsDefaultALQ(const std::vector<Well>& wells_ecl)
{
const int nw = wells_ecl.size();
for (int i = 0; i<nw; i++) {
const Well &well = wells_ecl[i];
if (well.isProducer()) {
// NOTE: This is the value set in item 12 of WCONPROD, or with WELTARG
auto alq = well.alq_value();
this->alq_state.update_default(well.name(), alq);
}
}
}
bool WellState::operator==(const WellState& rhs) const
{
return this->alq_state == rhs.alq_state &&
this->well_rates == rhs.well_rates &&
this->wells_ == rhs.wells_;
}
const ParallelWellInfo&
WellState::parallelWellInfo(std::size_t well_index) const
{
const auto& ws = this->well(well_index);
return ws.parallel_info;
}
template void WellState::updateGlobalIsGrup<Parallel::Communication>(const Parallel::Communication& comm);
template void WellState::communicateGroupRates<Parallel::Communication>(const Parallel::Communication& comm);
} // namespace Opm