mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-14 04:11:55 -06:00
286 lines
10 KiB
C++
286 lines
10 KiB
C++
/*
|
|
Copyright 2016 IRIS AS
|
|
Copyright 2019, 2020 Equinor ASA
|
|
Copyright 2020 SINTEF Digital, Mathematics and Cybernetics
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include <config.h>
|
|
#include <opm/common/TimingMacros.hpp>
|
|
#include <opm/simulators/linalg/ISTLSolverBda.hpp>
|
|
|
|
#include <dune/istl/schwarz.hh>
|
|
|
|
#include <opm/grid/CpGrid.hpp>
|
|
|
|
#include <opm/simulators/linalg/FlexibleSolver.hpp>
|
|
#include <opm/simulators/linalg/ParallelIstlInformation.hpp>
|
|
#include <opm/simulators/utils/ParallelCommunication.hpp>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
#include <opm/simulators/linalg/bda/BdaBridge.hpp>
|
|
#include <opm/simulators/linalg/bda/WellContributions.hpp>
|
|
|
|
#if HAVE_DUNE_ALUGRID
|
|
#include <dune/alugrid/grid.hh>
|
|
#include <opm/simulators/flow/AluGridCartesianIndexMapper.hpp>
|
|
#endif // HAVE_DUNE_ALUGRID
|
|
|
|
#include <opm/grid/polyhedralgrid.hh>
|
|
|
|
#include <thread>
|
|
std::shared_ptr<std::thread> copyThread;
|
|
|
|
#if HAVE_OPENMP
|
|
#include <omp.h>
|
|
#endif // HAVE_OPENMP
|
|
|
|
namespace Opm::detail {
|
|
|
|
template<class Matrix, class Vector>
|
|
BdaSolverInfo<Matrix,Vector>::
|
|
BdaSolverInfo(const std::string& accelerator_mode,
|
|
const int linear_solver_verbosity,
|
|
const int maxit,
|
|
const Scalar tolerance,
|
|
const int platformID,
|
|
const int deviceID,
|
|
const bool opencl_ilu_parallel,
|
|
const std::string& linsolver)
|
|
: bridge_(std::make_unique<Bridge>(accelerator_mode,
|
|
linear_solver_verbosity, maxit,
|
|
tolerance, platformID, deviceID,
|
|
opencl_ilu_parallel, linsolver))
|
|
, accelerator_mode_(accelerator_mode)
|
|
{}
|
|
|
|
template<class Matrix, class Vector>
|
|
BdaSolverInfo<Matrix,Vector>::~BdaSolverInfo() = default;
|
|
|
|
template<class Matrix, class Vector>
|
|
template<class Grid>
|
|
void BdaSolverInfo<Matrix,Vector>::
|
|
prepare(const Grid& grid,
|
|
const Dune::CartesianIndexMapper<Grid>& cartMapper,
|
|
const std::vector<Well>& wellsForConn,
|
|
const std::unordered_map<std::string, std::set<int>>& possibleFutureConnections,
|
|
const std::vector<int>& cellPartition,
|
|
const std::size_t nonzeroes,
|
|
const bool useWellConn)
|
|
{
|
|
if (numJacobiBlocks_ > 1) {
|
|
detail::setWellConnections(grid, cartMapper, wellsForConn,
|
|
possibleFutureConnections,
|
|
useWellConn,
|
|
wellConnectionsGraph_,
|
|
numJacobiBlocks_);
|
|
this->blockJacobiAdjacency(grid, cellPartition, nonzeroes);
|
|
}
|
|
}
|
|
|
|
template<class Matrix, class Vector>
|
|
bool BdaSolverInfo<Matrix,Vector>::
|
|
apply(Vector& rhs,
|
|
const bool useWellConn,
|
|
[[maybe_unused]] WellContribFunc getContribs,
|
|
const int rank,
|
|
Matrix& matrix,
|
|
Vector& x,
|
|
Dune::InverseOperatorResult& result)
|
|
{
|
|
bool use_gpu = bridge_->getUseGpu();
|
|
if (use_gpu) {
|
|
auto wellContribs = WellContributions<Scalar>::create(accelerator_mode_, useWellConn);
|
|
bridge_->initWellContributions(*wellContribs, x.N() * x[0].N());
|
|
|
|
// the WellContributions can only be applied separately with CUDA, OpenCL or rocsparse, not with amgcl or rocalution
|
|
#if HAVE_CUDA || HAVE_OPENCL || HAVE_ROCSPARSE
|
|
if (!useWellConn) {
|
|
getContribs(*wellContribs);
|
|
}
|
|
#endif
|
|
|
|
bool use_multithreading = true;
|
|
#if HAVE_OPENMP
|
|
// if user manually sets --threads-per-process=1, do not use multithreading
|
|
if (omp_get_max_threads() == 1)
|
|
use_multithreading = false;
|
|
#endif // HAVE_OPENMP
|
|
|
|
if (numJacobiBlocks_ > 1) {
|
|
if(use_multithreading) {
|
|
//NOTE: copyThread can safely write to jacMat because in solve_system both matrix and *blockJacobiForGPUILU0_ diagonal entries
|
|
//are checked and potentially overwritten in replaceZeroDiagonal() by mainThread. However, no matter the thread writing sequence,
|
|
//the final entry in jacMat is correct.
|
|
//#if HAVE_OPENMP
|
|
copyThread = std::make_shared<std::thread>([&](){this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_);});
|
|
//#endif // HAVE_OPENMP
|
|
}
|
|
else {
|
|
this->copyMatToBlockJac(matrix, *blockJacobiForGPUILU0_);
|
|
}
|
|
|
|
// Const_cast needed since the CUDA stuff overwrites values for better matrix condition..
|
|
bridge_->solve_system(&matrix, blockJacobiForGPUILU0_.get(),
|
|
numJacobiBlocks_, rhs, *wellContribs, result);
|
|
}
|
|
else
|
|
bridge_->solve_system(&matrix, &matrix,
|
|
numJacobiBlocks_, rhs, *wellContribs, result);
|
|
if (result.converged) {
|
|
// get result vector x from non-Dune backend, iff solve was successful
|
|
bridge_->get_result(x);
|
|
return true;
|
|
} else {
|
|
// warn about CPU fallback
|
|
// BdaBridge might have disabled its BdaSolver for this simulation due to some error
|
|
// in that case the BdaBridge is disabled and flexibleSolver is always used
|
|
// or maybe the BdaSolver did not converge in time, then it will be used next linear solve
|
|
if (rank == 0) {
|
|
OpmLog::warning(bridge_->getAccleratorName() + " did not converge, now trying Dune to solve current linear system...");
|
|
}
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
template<class Matrix, class Vector>
|
|
bool BdaSolverInfo<Matrix,Vector>::
|
|
gpuActive()
|
|
{
|
|
return bridge_->getUseGpu();
|
|
}
|
|
|
|
template<class Matrix, class Vector>
|
|
template<class Grid>
|
|
void BdaSolverInfo<Matrix,Vector>::
|
|
blockJacobiAdjacency(const Grid& grid,
|
|
const std::vector<int>& cell_part,
|
|
std::size_t nonzeroes)
|
|
{
|
|
using size_type = typename Matrix::size_type;
|
|
using Iter = typename Matrix::CreateIterator;
|
|
size_type numCells = grid.size(0);
|
|
blockJacobiForGPUILU0_ = std::make_unique<Matrix>(numCells, numCells,
|
|
nonzeroes, Matrix::row_wise);
|
|
|
|
const auto& lid = grid.localIdSet();
|
|
const auto& gridView = grid.leafGridView();
|
|
auto elemIt = gridView.template begin<0>(); // should never overrun, since blockJacobiForGPUILU0_ is initialized with numCells rows
|
|
|
|
// Loop over cells
|
|
for (Iter row = blockJacobiForGPUILU0_->createbegin();
|
|
row != blockJacobiForGPUILU0_->createend(); ++elemIt, ++row)
|
|
{
|
|
const auto& elem = *elemIt;
|
|
size_type idx = lid.id(elem);
|
|
row.insert(idx);
|
|
|
|
// Add well non-zero connections
|
|
for (const auto wc : wellConnectionsGraph_[idx]) {
|
|
row.insert(wc);
|
|
}
|
|
|
|
int locPart = cell_part[idx];
|
|
|
|
//Add neighbor if it is on the same part
|
|
auto isend = gridView.iend(elem);
|
|
for (auto is = gridView.ibegin(elem); is!=isend; ++is)
|
|
{
|
|
//check if face has neighbor
|
|
if (is->neighbor())
|
|
{
|
|
size_type nid = lid.id(is->outside());
|
|
int nabPart = cell_part[nid];
|
|
if (locPart == nabPart) {
|
|
row.insert(nid);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Matrix, class Vector>
|
|
void BdaSolverInfo<Matrix,Vector>::
|
|
copyMatToBlockJac(const Matrix& mat, Matrix& blockJac)
|
|
{
|
|
auto rbegin = blockJac.begin();
|
|
auto rend = blockJac.end();
|
|
auto outerRow = mat.begin();
|
|
for (auto row = rbegin; row != rend; ++row, ++outerRow) {
|
|
auto outerCol = (*outerRow).begin();
|
|
for (auto col = (*row).begin(); col != (*row).end(); ++col) {
|
|
// outerRow is guaranteed to have all column entries that row has!
|
|
while (outerCol.index() < col.index()) {
|
|
++outerCol;
|
|
}
|
|
assert(outerCol.index() == col.index());
|
|
*col = *outerCol; // copy nonzero block
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class Scalar, int Dim>
|
|
using BM = Dune::BCRSMatrix<MatrixBlock<Scalar,Dim,Dim>>;
|
|
template<class Scalar, int Dim>
|
|
using BV = Dune::BlockVector<Dune::FieldVector<Scalar,Dim>>;
|
|
|
|
#define INSTANTIATE_GRID(T, Dim, Grid) \
|
|
template void BdaSolverInfo<BM<T,Dim>,BV<T,Dim>>:: \
|
|
prepare(const Grid&, \
|
|
const Dune::CartesianIndexMapper<Grid>&, \
|
|
const std::vector<Well>&, \
|
|
const std::unordered_map<std::string, std::set<int>>&, \
|
|
const std::vector<int>&, \
|
|
const std::size_t, const bool);
|
|
using PolyHedralGrid3D = Dune::PolyhedralGrid<3, 3>;
|
|
#if HAVE_DUNE_ALUGRID
|
|
#if HAVE_MPI
|
|
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridMPIComm>;
|
|
#else
|
|
using ALUGrid3CN = Dune::ALUGrid<3, 3, Dune::cube, Dune::nonconforming, Dune::ALUGridNoComm>;
|
|
#endif //HAVE_MPI
|
|
#define INSTANTIATE(T,Dim) \
|
|
template struct BdaSolverInfo<BM<T,Dim>,BV<T,Dim>>; \
|
|
INSTANTIATE_GRID(T,Dim,Dune::CpGrid) \
|
|
INSTANTIATE_GRID(T,Dim,ALUGrid3CN) \
|
|
INSTANTIATE_GRID(T,Dim,PolyHedralGrid3D)
|
|
#else
|
|
#define INSTANTIATE(T,Dim) \
|
|
template struct BdaSolverInfo<BM<T,Dim>,BV<T,Dim>>; \
|
|
INSTANTIATE_GRID(T,Dim,Dune::CpGrid) \
|
|
INSTANTIATE_GRID(T,Dim,PolyHedralGrid3D)
|
|
#endif
|
|
|
|
#define INSTANTIATE_TYPE(T) \
|
|
INSTANTIATE(T,1) \
|
|
INSTANTIATE(T,2) \
|
|
INSTANTIATE(T,3) \
|
|
INSTANTIATE(T,4) \
|
|
INSTANTIATE(T,5) \
|
|
INSTANTIATE(T,6)
|
|
|
|
INSTANTIATE_TYPE(double)
|
|
|
|
#if FLOW_INSTANTIATE_FLOAT
|
|
INSTANTIATE_TYPE(float)
|
|
#endif
|
|
|
|
} // namespace Opm::detail
|