opm-simulators/opm/simulators/linalg/bicgstabsolver.hh
2024-09-04 12:06:35 +02:00

357 lines
12 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::BiCGStabSolver
*/
#ifndef EWOMS_BICG_STAB_SOLVER_HH
#define EWOMS_BICG_STAB_SOLVER_HH
#include "convergencecriterion.hh"
#include "residreductioncriterion.hh"
#include "linearsolverreport.hh"
#include <opm/models/utils/timer.hpp>
#include <opm/models/utils/timerguard.hh>
#include <opm/common/Exceptions.hpp>
#include <memory>
namespace Opm {
namespace Linear {
/*!
* \brief Implements a preconditioned stabilized BiCG linear solver.
*
* This solves a linear system of equations Ax = b, where the matrix A is sparse and may
* be unsymmetric.
*
* See https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method, (article
* date: December 19, 2016)
*/
template <class LinearOperator, class Vector, class Preconditioner>
class BiCGStabSolver
{
using ConvergenceCriterion = Opm::Linear::ConvergenceCriterion<Vector>;
using Scalar = typename LinearOperator::field_type;
public:
BiCGStabSolver(Preconditioner& preconditioner,
ConvergenceCriterion& convergenceCriterion,
Dune::ScalarProduct<Vector>& scalarProduct)
: preconditioner_(preconditioner)
, convergenceCriterion_(convergenceCriterion)
, scalarProduct_(scalarProduct)
{
A_ = nullptr;
b_ = nullptr;
maxIterations_ = 1000;
}
/*!
* \brief Set the maximum number of iterations before we give up without achieving
* convergence.
*/
void setMaxIterations(unsigned value)
{ maxIterations_ = value; }
/*!
* \brief Return the maximum number of iterations before we give up without achieving
* convergence.
*/
unsigned maxIterations() const
{ return maxIterations_; }
/*!
* \brief Set the verbosity level of the linear solver
*
* The levels correspont to those used by the dune-istl solvers:
*
* - 0: no output
* - 1: summary output at the end of the solution proceedure (if no exception was
* thrown)
* - 2: detailed output after each iteration
*/
void setVerbosity(unsigned value)
{ verbosity_ = value; }
/*!
* \brief Return the verbosity level of the linear solver.
*/
unsigned verbosity() const
{ return verbosity_; }
/*!
* \brief Set the matrix "A" of the linear system.
*/
void setLinearOperator(const LinearOperator* A)
{ A_ = A; }
/*!
* \brief Set the right hand side "b" of the linear system.
*/
void setRhs(const Vector* b)
{ b_ = b; }
/*!
* \brief Run the stabilized BiCG solver and store the result into the "x" vector.
*/
bool apply(Vector& x)
{
// epsilon used for detecting breakdowns
const Scalar breakdownEps = std::numeric_limits<Scalar>::min() * Scalar(1e10);
// start the stop watch for the solution proceedure, but make sure that it is
// turned off regardless of how we leave the stadium. (i.e., that the timer gets
// stopped in case exceptions are thrown as well as if the method returns
// regularly.)
report_.reset();
TimerGuard reportTimerGuard(report_.timer());
report_.timer().start();
// preconditioned stabilized biconjugate gradient method
//
// See https://en.wikipedia.org/wiki/Biconjugate_gradient_stabilized_method,
// (article date: December 19, 2016)
// set the initial solution to the zero vector
x = 0.0;
// prepare the preconditioner. to allow some optimizations, we assume that the
// preconditioner does not change the initial solution x if the initial solution
// is a zero vector.
Vector r = *b_;
preconditioner_.pre(x, r);
#ifndef NDEBUG
// ensure that the preconditioner does not change the initial solution. since
// this is a debugging check, we don't care if it does not work properly in
// parallel. (because this goes wrong, it should be considered to be a bug in the
// code anyway.)
for (unsigned i = 0; i < x.size(); ++i) {
const auto& u = x[i];
if (u*u != 0.0)
throw std::logic_error("The preconditioner is assumed not to modify the initial solution!");
}
#endif // NDEBUG
convergenceCriterion_.setInitial(x, r);
if (convergenceCriterion_.converged()) {
report_.setConverged(true);
return report_.converged();
}
if (verbosity_ > 0) {
std::cout << "-------- BiCGStabSolver --------" << std::endl;
convergenceCriterion_.printInitial();
}
// r0 = b - Ax (i.e., r -= A*x_0 = b, because x_0 == 0)
//A_->applyscaleadd(/*alpha=*/-1.0, x, r);
// r0hat = r0
const Vector& r0hat = *b_;
// rho0 = alpha = omega0 = 1
Scalar rho = 1.0;
Scalar alpha = 1.0;
Scalar omega = 1.0;
// v_0 = p_0 = 0;
Vector v(r);
v = 0.0;
Vector p(v);
// create all the temporary vectors which we need. Be aware that some of them
// actually point to the same object because they are not needed at the same time!
Vector y(x);
Vector& h(x);
Vector& s(r);
Vector z(x);
Vector& t(y);
unsigned n = x.size();
for (; report_.iterations() < maxIterations_; report_.increment()) {
// rho_i = (r0hat,r_(i-1))
Scalar rho_i = scalarProduct_.dot(r0hat, r);
// beta = (rho_i/rho_(i-1))*(alpha/omega_(i-1))
if (std::abs(rho) <= breakdownEps || std::abs(omega) <= breakdownEps)
throw NumericalProblem("Breakdown of the BiCGStab solver (division by zero)");
Scalar beta = (rho_i/rho)*(alpha/omega);
// make rho correspond to the current iteration (i.e., forget rho_(i-1))
rho = rho_i;
// this loop conflates the following operations:
//
// p_i = r_(i-1) + beta*(p_(i-1) - omega_(i-1)*v_(i-1))
// y = p
for (unsigned i = 0; i < n; ++i) {
// p_i = r_(i-1) + beta*(p_(i-1) - omega_(i-1)*v_(i-1))
auto tmp = v[i];
tmp *= omega;
tmp -= p[i];
tmp *= -beta;
p[i] = r[i];
p[i] += tmp;
// y = p; not required because the precontioner overwrites y anyway...
// y[i] = p[i];
}
// y = K^-1 * p_i
preconditioner_.apply(y, p);
// v_i = A*y
A_->apply(y, v);
// alpha = rho_i/(r0hat,v_i)
Scalar denom = scalarProduct_.dot(r0hat, v);
if (std::abs(denom) <= breakdownEps)
throw NumericalProblem("Breakdown of the BiCGStab solver (division by zero)");
alpha = rho_i/denom;
if (std::abs(alpha) <= breakdownEps)
throw NumericalProblem("Breakdown of the BiCGStab solver (stagnation detected)");
// h = x_(i-1) + alpha*y
// s = r_(i-1) - alpha*v_i
for (unsigned i = 0; i < n; ++i) {
auto tmp = y[i];
tmp *= alpha;
tmp += x[i];
h[i] = tmp;
//s[i] = r[i]; // not necessary because r and s are the same object
tmp = v[i];
tmp *= alpha;
s[i] -= tmp;
}
// do convergence check and print terminal output
convergenceCriterion_.update(/*curSol=*/h, /*delta=*/y, s);
if (convergenceCriterion_.converged()) {
if (verbosity_ > 0) {
convergenceCriterion_.print(report_.iterations() + 0.5);
std::cout << "-------- /BiCGStabSolver --------" << std::endl;
}
// x = h; // not necessary because x and h are the same object
preconditioner_.post(x);
report_.setConverged(true);
return report_.converged();
}
else if (convergenceCriterion_.failed()) {
if (verbosity_ > 0) {
convergenceCriterion_.print(report_.iterations() + 0.5);
std::cout << "-------- /BiCGStabSolver --------" << std::endl;
}
report_.setConverged(false);
return report_.converged();
}
if (verbosity_ > 1)
convergenceCriterion_.print(report_.iterations() + 0.5);
// z = K^-1*s
z = s;
preconditioner_.apply(z, s);
// t = Az
t = z;
A_->apply(z, t);
// omega_i = (t*s)/(t*t)
denom = scalarProduct_.dot(t, t);
if (std::abs(denom) <= breakdownEps)
throw NumericalProblem("Breakdown of the BiCGStab solver (division by zero)");
omega = scalarProduct_.dot(t, s)/denom;
if (std::abs(omega) <= breakdownEps)
throw NumericalProblem("Breakdown of the BiCGStab solver (stagnation detected)");
// x_i = h + omega_i*z
// x = h; // not necessary because x and h are the same object
x.axpy(/*a=*/omega, /*y=*/z);
// do convergence check and print terminal output
convergenceCriterion_.update(/*curSol=*/x, /*delta=*/z, r);
if (convergenceCriterion_.converged()) {
if (verbosity_ > 0) {
convergenceCriterion_.print(1.0 + report_.iterations());
std::cout << "-------- /BiCGStabSolver --------" << std::endl;
}
preconditioner_.post(x);
report_.setConverged(true);
return report_.converged();
}
else if (convergenceCriterion_.failed()) {
if (verbosity_ > 0) {
convergenceCriterion_.print(1.0 + report_.iterations());
std::cout << "-------- /BiCGStabSolver --------" << std::endl;
}
report_.setConverged(false);
return report_.converged();
}
if (verbosity_ > 1)
convergenceCriterion_.print(1.0 + report_.iterations());
// r_i = s - omega*t
// r = s; // not necessary because r and s are the same object
r.axpy(/*a=*/-omega, /*y=*/t);
}
report_.setConverged(false);
return report_.converged();
}
void setConvergenceCriterion(ConvergenceCriterion& crit)
{
convergenceCriterion_ = &crit;
}
const SolverReport& report() const
{ return report_; }
private:
const LinearOperator* A_;
const Vector* b_;
Preconditioner& preconditioner_;
ConvergenceCriterion& convergenceCriterion_;
Dune::ScalarProduct<Vector>& scalarProduct_;
SolverReport report_;
unsigned maxIterations_;
unsigned verbosity_;
};
} // namespace Linear
} // namespace Opm
#endif