opm-simulators/opm/simulators/linalg/parallelamgbackend.hh
2024-08-14 12:47:59 +02:00

331 lines
13 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Opm::Linear::ParallelAmgBackend
*/
#ifndef EWOMS_PARALLEL_AMG_BACKEND_HH
#define EWOMS_PARALLEL_AMG_BACKEND_HH
#include "linalgproperties.hh"
#include "parallelbasebackend.hh"
#include "bicgstabsolver.hh"
#include "combinedcriterion.hh"
#include "istlsparsematrixadapter.hh"
#include <dune/istl/bcrsmatrix.hh>
#include <dune/istl/paamg/amg.hh>
#include <dune/istl/paamg/pinfo.hh>
#include <dune/istl/owneroverlapcopy.hh>
#include <memory>
#include <tuple>
#include <utility>
namespace Opm::Linear {
template <class TypeTag>
class ParallelAmgBackend;
} // namespace Opm::Linear
namespace Opm::Properties {
// Create new type tags
namespace TTag {
struct ParallelAmgLinearSolver
{ using InheritsFrom = std::tuple<ParallelBaseLinearSolver>; };
} // end namespace TTag
template<class TypeTag>
struct LinearSolverBackend<TypeTag, TTag::ParallelAmgLinearSolver>
{ using type = Opm::Linear::ParallelAmgBackend<TypeTag>; };
} // namespace Opm::Properties
namespace Opm::Parameters {
//! The target number of DOFs per processor for the parallel algebraic
//! multi-grid solver
struct AmgCoarsenTarget { static constexpr int value = 5000; };
}
namespace Opm::Linear {
/*!
* \ingroup Linear
*
* \brief Provides a linear solver backend using the parallel
* algebraic multi-grid (AMG) linear solver from DUNE-ISTL.
*/
template <class TypeTag>
class ParallelAmgBackend : public ParallelBaseBackend<TypeTag>
{
using ParentType = ParallelBaseBackend<TypeTag>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using LinearSolverScalar = GetPropType<TypeTag, Properties::LinearSolverScalar>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
using Overlap = GetPropType<TypeTag, Properties::Overlap>;
using SparseMatrixAdapter = GetPropType<TypeTag, Properties::SparseMatrixAdapter>;
using ParallelOperator = typename ParentType::ParallelOperator;
using OverlappingVector = typename ParentType::OverlappingVector;
using ParallelPreconditioner = typename ParentType::ParallelPreconditioner;
using ParallelScalarProduct = typename ParentType::ParallelScalarProduct;
static constexpr int numEq = getPropValue<TypeTag, Properties::NumEq>();
using VectorBlock = Dune::FieldVector<LinearSolverScalar, numEq>;
using MatrixBlock = typename SparseMatrixAdapter::MatrixBlock;
using IstlMatrix = typename SparseMatrixAdapter::IstlMatrix;
using Vector = Dune::BlockVector<VectorBlock>;
// define the smoother used for the AMG and specify its
// arguments
using SequentialSmoother = Dune::SeqSOR<IstlMatrix, Vector, Vector>;
// using SequentialSmoother = Dune::SeqSSOR<IstlMatrix,Vector,Vector>;
// using SequentialSmoother = Dune::SeqJac<IstlMatrix,Vector,Vector>;
// using SequentialSmoother = Dune::SeqILU<IstlMatrix,Vector,Vector>;
#if HAVE_MPI
using OwnerOverlapCopyCommunication = Dune::OwnerOverlapCopyCommunication<Opm::Linear::Index>;
using FineOperator = Dune::OverlappingSchwarzOperator<IstlMatrix,
Vector,
Vector,
OwnerOverlapCopyCommunication>;
using FineScalarProduct = Dune::OverlappingSchwarzScalarProduct<Vector,
OwnerOverlapCopyCommunication>;
using ParallelSmoother = Dune::BlockPreconditioner<Vector,
Vector,
OwnerOverlapCopyCommunication,
SequentialSmoother>;
using AMG = Dune::Amg::AMG<FineOperator,
Vector,
ParallelSmoother,
OwnerOverlapCopyCommunication>;
#else
using FineOperator = Dune::MatrixAdapter<IstlMatrix, Vector, Vector>;
using FineScalarProduct = Dune::SeqScalarProduct<Vector>;
using ParallelSmoother = SequentialSmoother;
using AMG = Dune::Amg::AMG<FineOperator, Vector, ParallelSmoother>;
#endif
using RawLinearSolver = BiCGStabSolver<ParallelOperator,
OverlappingVector,
AMG> ;
static_assert(std::is_same<SparseMatrixAdapter, IstlSparseMatrixAdapter<MatrixBlock> >::value,
"The ParallelAmgBackend linear solver backend requires the IstlSparseMatrixAdapter");
public:
ParallelAmgBackend(const Simulator& simulator)
: ParentType(simulator)
{ }
static void registerParameters()
{
ParentType::registerParameters();
Parameters::Register<Parameters::LinearSolverMaxError<Scalar>>
("The maximum residual error which the linear solver tolerates "
"without giving up");
Parameters::Register<Parameters::AmgCoarsenTarget>
("The coarsening target for the agglomerations of "
"the AMG preconditioner");
}
protected:
friend ParentType;
std::shared_ptr<AMG> preparePreconditioner_()
{
#if HAVE_MPI
// create and initialize DUNE's OwnerOverlapCopyCommunication
// using the domestic overlap
istlComm_ = std::make_shared<OwnerOverlapCopyCommunication>(MPI_COMM_WORLD);
setupAmgIndexSet_(this->overlappingMatrix_->overlap(), istlComm_->indexSet());
istlComm_->remoteIndices().template rebuild<false>();
#endif
// create the parallel scalar product and the parallel operator
#if HAVE_MPI
fineOperator_ = std::make_shared<FineOperator>(*this->overlappingMatrix_, *istlComm_);
#else
fineOperator_ = std::make_shared<FineOperator>(*this->overlappingMatrix_);
#endif
setupAmg_();
return amg_;
}
void cleanupPreconditioner_()
{ /* nothing to do */ }
std::shared_ptr<RawLinearSolver> prepareSolver_(ParallelOperator& parOperator,
ParallelScalarProduct& parScalarProduct,
AMG& parPreCond)
{
const auto& gridView = this->simulator_.gridView();
using CCC = CombinedCriterion<OverlappingVector, decltype(gridView.comm())>;
Scalar linearSolverTolerance = Parameters::Get<Parameters::LinearSolverTolerance<Scalar>>();
Scalar linearSolverAbsTolerance = Parameters::Get<Parameters::LinearSolverAbsTolerance<Scalar>>();
if (linearSolverAbsTolerance < 0.0) {
linearSolverAbsTolerance = this->simulator_.model().newtonMethod().tolerance()/100.0;
}
convCrit_.reset(new CCC(gridView.comm(),
/*residualReductionTolerance=*/linearSolverTolerance,
/*absoluteResidualTolerance=*/linearSolverAbsTolerance,
Parameters::Get<Parameters::LinearSolverMaxError<Scalar>>()));
auto bicgstabSolver =
std::make_shared<RawLinearSolver>(parPreCond, *convCrit_, parScalarProduct);
int verbosity = 0;
if (parOperator.overlap().myRank() == 0)
verbosity = Parameters::Get<Parameters::LinearSolverVerbosity>();
bicgstabSolver->setVerbosity(verbosity);
bicgstabSolver->setMaxIterations(Parameters::Get<Parameters::LinearSolverMaxIterations>());
bicgstabSolver->setLinearOperator(&parOperator);
bicgstabSolver->setRhs(this->overlappingb_);
return bicgstabSolver;
}
std::pair<bool,int> runSolver_(std::shared_ptr<RawLinearSolver> solver)
{
bool converged = solver->apply(*this->overlappingx_);
return std::make_pair(converged, int(solver->report().iterations()));
}
void cleanupSolver_()
{ /* nothing to do */ }
#if HAVE_MPI
template <class ParallelIndexSet>
void setupAmgIndexSet_(const Overlap& overlap, ParallelIndexSet& istlIndices)
{
using GridAttributes = Dune::OwnerOverlapCopyAttributeSet;
using GridAttributeSet = Dune::OwnerOverlapCopyAttributeSet::AttributeSet;
// create DUNE's ParallelIndexSet from a domestic overlap
istlIndices.beginResize();
for (Index curIdx = 0; static_cast<size_t>(curIdx) < overlap.numDomestic(); ++curIdx) {
GridAttributeSet gridFlag =
overlap.iAmMasterOf(curIdx)
? GridAttributes::owner
: GridAttributes::copy;
// an index is used by other processes if it is in the
// domestic or in the foreign overlap.
bool isShared = overlap.isInOverlap(curIdx);
assert(curIdx == overlap.globalToDomestic(overlap.domesticToGlobal(curIdx)));
istlIndices.add(/*globalIdx=*/overlap.domesticToGlobal(curIdx),
Dune::ParallelLocalIndex<GridAttributeSet>(static_cast<size_t>(curIdx),
gridFlag,
isShared));
}
istlIndices.endResize();
}
#endif
// trailing return type with decltype used for detecting existence of setUseFixedOrder member function by overloading the setUseFixedOrder function
template <typename C>
auto setUseFixedOrder(C criterion, bool booleanValue) -> decltype(criterion.setUseFixedOrder(booleanValue))
{
return criterion.setUseFixedOrder(booleanValue); // Set flag to ensure that the matrices in the AMG hierarchy are constructed with deterministic indices.
}
template <typename C>
void setUseFixedOrder(C, ...)
{
// do nothing, since the function setUseFixedOrder does not exist yet
}
void setupAmg_()
{
if (amg_)
amg_.reset();
int verbosity = 0;
if (this->simulator_.vanguard().gridView().comm().rank() == 0)
verbosity = Parameters::Get<Parameters::LinearSolverVerbosity>();
using SmootherArgs = typename Dune::Amg::SmootherTraits<ParallelSmoother>::Arguments;
SmootherArgs smootherArgs;
smootherArgs.iterations = 1;
smootherArgs.relaxationFactor = 1.0;
// specify the coarsen criterion:
//
// using CoarsenCriterion =
// Dune::Amg::CoarsenCriterion<Dune::Amg::SymmetricCriterion<IstlMatrix,
// Dune::Amg::FirstDiagonal>>
using CoarsenCriterion = Dune::Amg::
CoarsenCriterion<Dune::Amg::SymmetricCriterion<IstlMatrix, Dune::Amg::FrobeniusNorm> >;
int coarsenTarget = Parameters::Get<Parameters::AmgCoarsenTarget>();
CoarsenCriterion coarsenCriterion(/*maxLevel=*/15, coarsenTarget);
coarsenCriterion.setDefaultValuesAnisotropic(GridView::dimension,
/*aggregateSizePerDim=*/3);
if (verbosity > 0)
coarsenCriterion.setDebugLevel(1);
else
coarsenCriterion.setDebugLevel(0); // make the AMG shut up
// reduce the minium coarsen rate (default is 1.2)
coarsenCriterion.setMinCoarsenRate(1.05);
// coarsenCriterion.setAccumulate(Dune::Amg::noAccu);
coarsenCriterion.setAccumulate(Dune::Amg::atOnceAccu);
coarsenCriterion.setSkipIsolated(false);
setUseFixedOrder(coarsenCriterion, true); // If possible, set flag to ensure that the matrices in the AMG hierarchy are constructed with deterministic indices.
// instantiate the AMG preconditioner
#if HAVE_MPI
amg_ = std::make_shared<AMG>(*fineOperator_, coarsenCriterion, smootherArgs, *istlComm_);
#else
amg_ = std::make_shared<AMG>(*fineOperator_, coarsenCriterion, smootherArgs);
#endif
}
std::unique_ptr<ConvergenceCriterion<OverlappingVector> > convCrit_;
std::shared_ptr<FineOperator> fineOperator_;
std::shared_ptr<AMG> amg_;
#if HAVE_MPI
std::shared_ptr<OwnerOverlapCopyCommunication> istlComm_;
#endif
};
} // namespace Opm::Linear
#endif