opm-simulators/opm/simulators/wells/GroupEconomicLimitsChecker.cpp
2024-08-19 13:22:22 +02:00

415 lines
14 KiB
C++

/*
Copyright 2023 Equinor ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/GroupEconomicLimitsChecker.hpp>
#include <opm/input/eclipse/EclipseState/EclipseState.hpp>
#include <opm/input/eclipse/Schedule/Group/GroupEconProductionLimits.hpp>
#include <opm/input/eclipse/Schedule/Schedule.hpp>
#include <opm/input/eclipse/Schedule/Well/WellTestConfig.hpp>
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
#include <opm/simulators/wells/BlackoilWellModelGeneric.hpp>
#include <opm/simulators/wells/WellGroupHelpers.hpp>
#include <fmt/format.h>
#include <ctime>
#include <chrono>
#include <sstream>
#include <iomanip>
namespace Opm {
std::string simTimeToString(const std::time_t start_time, const double sim_time)
{
const auto start_timep = std::chrono::system_clock::from_time_t(start_time);
const auto sim_duration = std::chrono::duration_cast<std::chrono::system_clock::duration>(
std::chrono::duration<double>(sim_time)
);
const std::time_t cur_time = std::chrono::system_clock::to_time_t(start_timep + sim_duration);
std::ostringstream ss;
ss << std::put_time(std::localtime(&cur_time), "%d-%b-%Y");
return ss.str();
}
template<class Scalar>
GroupEconomicLimitsChecker<Scalar>::
GroupEconomicLimitsChecker(const BlackoilWellModelGeneric<Scalar>& well_model,
WellTestState& well_test_state,
const Group& group,
const double simulation_time,
const int report_step_idx,
DeferredLogger& deferred_logger)
: well_model_{well_model}
, group_{group}
, simulation_time_{simulation_time}
, report_step_idx_{report_step_idx}
, deferred_logger_{deferred_logger}
, date_string_{simTimeToString(well_model.schedule().getStartTime(),simulation_time)}
, unit_system_{well_model.eclipseState().getUnits()}
, well_state_{well_model.wellState()}
, well_test_state_{well_test_state}
, schedule_{well_model.schedule()}
, gecon_props_{schedule_[report_step_idx_].gecon().get_group_prop(
schedule_, well_model_.summaryState(), group_.name())}
{
for (std::size_t i = 0; i < this->phase_idx_map_.size(); i++) {
auto phase_idx = this->phase_idx_map_[i];
this->phase_idx_reverse_map_[phase_idx] = static_cast<int>(i);
auto phase_pos = this->well_model_.phaseUsage().phase_pos[phase_idx];
Scalar production_rate = WellGroupHelpers<Scalar>::sumWellSurfaceRates(this->group_,
this->schedule_,
this->well_state_,
this->report_step_idx_,
phase_pos,
/*isInjector*/false);
this->production_rates_[i] = this->well_model_.comm().sum(production_rate);
}
}
/****************************************
* Public methods in alphabetical order
****************************************/
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
activateEndRun()
{
displayDebugMessage("activate end run");
}
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
closeWells()
{
closeWellsRecursive(this->group_);
}
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
doWorkOver()
{
if (this->gecon_props_.workover() != GroupEconProductionLimits::EconWorkover::NONE) {
throwNotImplementedError("workover procedure");
}
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
endRun()
{
if (this->gecon_props_.endRun()) {
throwNotImplementedError("end run flag YES");
}
return false;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
GOR()
{
auto oil_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Liquid];
auto gas_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Vapour];
auto oil_rate = this->production_rates_[oil_phase_idx];
auto gas_rate = this->production_rates_[gas_phase_idx];
Scalar gor;
if (gas_rate <= 0.0) {
gor = 0.0;
}
else if (oil_rate <= 0.0) {
gor = 1e100;
}
else {
gor = gas_rate / oil_rate;
}
if (auto max_gor = this->gecon_props_.maxGasOilRatio(); max_gor) {
if (gor > *max_gor) {
if (this->debug_) {
const std::string msg = fmt::format(
"GOR={} is greater than maximum: {}",
gor, *max_gor);
displayDebugMessage(msg);
}
addPrintMessage(" Gas/oil ratio = {:.2f} {} which is greater than the minimum economic value = {:.2f} {}",
gor, *max_gor, UnitSystem::measure::gas_oil_ratio);
return true;
}
}
return false;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
minGasRate()
{
auto phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Vapour];
auto gas_production_rate = this->production_rates_[phase_idx];
if (this->debug_) {
const std::string msg = fmt::format(
"gecon: group: {}, gas_rate={}", this->group_.name(), gas_production_rate);
displayDebugMessage(msg);
}
if (auto min_gas_rate = this->gecon_props_.minGasRate(); min_gas_rate) {
if (gas_production_rate < *min_gas_rate) {
if (this->debug_) {
const std::string msg = fmt::format(
"gas_rate={} is less than minimum: {}",
gas_production_rate, *min_gas_rate);
displayDebugMessage(msg);
}
addPrintMessage(" Gas rate = {:.2f} {} which is lower than the minimum economic value = {:.2f} {}",
gas_production_rate, *min_gas_rate, UnitSystem::measure::gas_surface_rate);
return true;
}
}
return false;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
minOilRate()
{
auto phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Liquid];
auto oil_production_rate = this->production_rates_[phase_idx];
if (this->debug_) {
const std::string msg = fmt::format(
"oil_rate={}", oil_production_rate);
displayDebugMessage(msg);
}
if (auto min_oil_rate = this->gecon_props_.minOilRate(); min_oil_rate) {
if (oil_production_rate < *min_oil_rate) {
if (this->debug_) {
const std::string msg = fmt::format(
"oil_rate={} is less than minimum: {}",
oil_production_rate, *min_oil_rate);
displayDebugMessage(msg);
}
addPrintMessage(" Oil rate = {:.2f} {} which is lower than the minimum economic value = {:.2f} {}",
oil_production_rate, *min_oil_rate, UnitSystem::measure::liquid_surface_rate);
return true;
}
}
return false;
}
template<class Scalar>
int GroupEconomicLimitsChecker<Scalar>::
numProducersOpen()
{
return 1;
}
template<class Scalar>
int GroupEconomicLimitsChecker<Scalar>::
numProducersOpenInitially()
{
return 1;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
waterCut()
{
auto oil_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Liquid];
auto water_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Aqua];
auto oil_rate = this->production_rates_[oil_phase_idx];
auto water_rate = this->production_rates_[water_phase_idx];
auto liquid_rate = oil_rate + water_rate;
Scalar water_cut;
if (liquid_rate == 0.0) {
water_cut = 0.0;
}
else {
if (water_rate < 0.0) {
water_cut = 0.0;
}
else if (oil_rate < 0.0) {
water_cut = 1.0;
}
else {
water_cut = water_rate / liquid_rate;
}
}
if (auto max_water_cut = this->gecon_props_.maxWaterCut(); max_water_cut) {
if (water_cut > *max_water_cut) {
if (this->debug_) {
const std::string msg = fmt::format(
"water_cut={} is greater than maximum: {}",
water_cut, *max_water_cut);
displayDebugMessage(msg);
}
addPrintMessage(" Water cut = {:.2f} {} which is greater than the maximum economic value = {:.2f} {}",
water_cut, *max_water_cut, UnitSystem::measure::water_cut);
return true;
}
}
return false;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
WGR()
{
auto water_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Aqua];
auto gas_phase_idx = this->phase_idx_reverse_map_[BlackoilPhases::Vapour];
auto water_rate = this->production_rates_[water_phase_idx];
auto gas_rate = this->production_rates_[gas_phase_idx];
Scalar wgr;
if (water_rate <= 0.0) {
wgr = 0.0;
}
else if (gas_rate <= 0.0) {
wgr = 1e100;
}
else {
wgr = water_rate / gas_rate;
}
if (auto max_wgr = this->gecon_props_.maxWaterGasRatio(); max_wgr) {
if (wgr > *max_wgr) {
if (this->debug_) {
const std::string msg = fmt::format(
"WGR={} is greater than maximum: {}",
wgr, *max_wgr);
displayDebugMessage(msg);
}
addPrintMessage(" Water/gas ratio = {:.2f} {} which is greater than the maximum economic value = {:.2f} {}",
wgr, *max_wgr, UnitSystem::measure::gas_oil_ratio); // Same units
return true;
}
}
return false;
}
/****************************************
* Private methods in alphabetical order
****************************************/
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
displayDebugMessage(const std::string& msg) const
{
if (this->debug_) {
const std::string msg2 = fmt::format(
"GECON: group: {} : {}", this->group_.name(), msg);
this->deferred_logger_.debug(msg2);
}
}
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
addPrintMessage(const std::string& msg,
const Scalar value,
const Scalar limit,
const UnitSystem::measure measure)
{
const std::string header = fmt::format(
"{}\nAt time = {:.2f} {} (date = {}): Group {} will close because: \n", this->message_separator(),
this->unit_system_.from_si(UnitSystem::measure::time, this->simulation_time_),
this->unit_system_.name(UnitSystem::measure::time),
this->date_string_,
this->group_.name()
);
const std::string measure_name(this->unit_system_.name(measure));
const std::string message = fmt::format(msg,
this->unit_system_.from_si(measure, value), measure_name,
this->unit_system_.from_si(measure, limit), measure_name);
this->message_ = header;
this->message_ += message;
}
template<class Scalar>
bool GroupEconomicLimitsChecker<Scalar>::
closeWellsRecursive(const Group& group, int level)
{
bool wells_closed = false;
if (this->debug_) {
const std::string msg = fmt::format("closing wells recursive : group {} ", group.name());
displayDebugMessage(msg);
}
for (const std::string& group_name : group.groups()) {
auto next_group = this->schedule_.getGroup(group_name, this->report_step_idx_);
wells_closed = wells_closed | closeWellsRecursive(next_group, level+1);
}
const auto indent = std::string(2*(level+1), ' ');
if (level > 0) {
const std::string msg = fmt::format("\n{}Closing group {}.", indent, group.name());
this->message_ += msg;
}
if (this->debug_) {
const std::string msg = fmt::format("closing wells recursive : group {} has {} wells",
group.name(), group.wells().size());
displayDebugMessage(msg);
}
for (const std::string& well_name : group.wells()) {
if (this->well_test_state_.well_is_closed(well_name)) {
if (this->debug_) {
const std::string msg = fmt::format(
"well {} is already closed", well_name);
displayDebugMessage(msg);
}
}
else {
wells_closed = true;
if (this->debug_) {
const std::string msg = fmt::format(
"closing well {}", well_name);
displayDebugMessage(msg);
}
const std::string msg = fmt::format("\n{} Closing well {}", indent, well_name);
this->message_ += msg;
this->well_test_state_.close_well(
well_name, WellTestConfig::Reason::GROUP, this->simulation_time_);
this->well_model_.updateClosedWellsThisStep(well_name);
}
}
// If any wells were closed, output message at top level (group that hit constraint), on rank 0
if (level == 0 && wells_closed && this->well_model_.comm().rank()==0) {
this->message_ += ("\n" + this->message_separator() + "\n");
this->deferred_logger_.info(this->message_);
}
return wells_closed;
}
template<class Scalar>
void GroupEconomicLimitsChecker<Scalar>::
throwNotImplementedError(const std::string& error) const
{
const std::string msg = fmt::format("Group: {} : GECON : {} not implemented",
this->group_.name(), error);
OPM_DEFLOG_THROW(std::runtime_error, msg, this->deferred_logger_);
}
template class GroupEconomicLimitsChecker<double>;
#if FLOW_INSTANTIATE_FLOAT
template class GroupEconomicLimitsChecker<float>;
#endif
} // namespace Opm