opm-simulators/opm/simulators/wells/VFPHelpers.cpp
2024-08-19 13:09:42 +02:00

829 lines
28 KiB
C++

/*
Copyright 2015 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#include <opm/simulators/wells/VFPHelpers.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <opm/material/densead/Evaluation.hpp>
#include <opm/material/densead/Math.hpp>
#include <opm/input/eclipse/Schedule/VFPInjTable.hpp>
#include <opm/input/eclipse/Schedule/VFPProdTable.hpp>
#include <cassert>
#include <cmath>
#include <stdexcept>
namespace {
/**
* Helper function that finds x for a given value of y for a line
* *NOTE ORDER OF ARGUMENTS*
*/
template<class Scalar>
Scalar findX(const Scalar x0,
const Scalar x1,
const Scalar y0,
const Scalar y1,
const Scalar y)
{
const Scalar dx = x1 - x0;
const Scalar dy = y1 - y0;
/**
* y = y0 + (dy / dx) * (x - x0)
* => x = x0 + (y - y0) * (dx / dy)
*
* If dy is zero, use x1 as the value.
*/
Scalar x = 0.0;
if (dy != 0.0) {
x = x0 + (y-y0) * (dx/dy);
}
else {
x = x1;
}
return x;
}
/**
* Returns zero if input value is negative
*/
template <typename T>
static T chopNegativeValues(const T& value) {
return Opm::max(0.0, value);
}
}
namespace Opm {
template<class Scalar>
detail::InterpData<Scalar> VFPHelpers<Scalar>::findInterpData(const Scalar value_in,
const std::vector<double>& values)
{
detail::InterpData<Scalar> retval;
const int nvalues = values.size();
// chopping the value to be zero, which means we do not
// extrapolate the table towards nagative ranges
const Scalar value = value_in < 0.? 0. : value_in;
//If we only have one value in our vector, return that
if (values.size() == 1) {
retval.ind_[0] = 0;
retval.ind_[1] = 0;
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
// Else search in the vector
else {
//If value is less than all values, use first interval
if (value < values.front()) {
retval.ind_[0] = 0;
retval.ind_[1] = 1;
}
//If value is greater than all values, use last interval
else if (value >= values.back()) {
retval.ind_[0] = nvalues-2;
retval.ind_[1] = nvalues-1;
}
else {
//Search internal intervals
for (int i=1; i<nvalues; ++i) {
if (values[i] >= value) {
retval.ind_[0] = i-1;
retval.ind_[1] = i;
break;
}
}
}
const Scalar start = values[retval.ind_[0]];
const Scalar end = values[retval.ind_[1]];
//Find interpolation ratio
if (end > start) {
//FIXME: Possible source for floating point error here if value and floor are large,
//but very close to each other
retval.inv_dist_ = 1.0 / (end-start);
retval.factor_ = (value-start) * retval.inv_dist_;
}
else {
retval.inv_dist_ = 0.0;
retval.factor_ = 0.0;
}
}
return retval;
}
template<class Scalar>
detail::VFPEvaluation<Scalar> VFPHelpers<Scalar>::
interpolate(const VFPProdTable& table,
const detail::InterpData<Scalar>& flo_i,
const detail::InterpData<Scalar>& thp_i,
const detail::InterpData<Scalar>& wfr_i,
const detail::InterpData<Scalar>& gfr_i,
const detail::InterpData<Scalar>& alq_i)
{
//Values and derivatives in a 5D hypercube
detail::VFPEvaluation<Scalar> nn[2][2][2][2][2];
//Pick out nearest neighbors (nn) to our evaluation point
//This is not really required, but performance-wise it may pay off, since the 32-elements
//we copy to (nn) will fit better in cache than the full original table for the
//interpolation below.
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
for (int f=0; f<=1; ++f) {
//Shorthands for indexing
const int ti = thp_i.ind_[t];
const int wi = wfr_i.ind_[w];
const int gi = gfr_i.ind_[g];
const int ai = alq_i.ind_[a];
const int fi = flo_i.ind_[f];
//Copy element
nn[t][w][g][a][f].value = table(ti,wi,gi,ai,fi);
}
}
}
}
}
//Calculate derivatives
//Note that the derivative of the two end points of a line aligned with the
//"axis of the derivative" are equal
for (int i=0; i<=1; ++i) {
for (int j=0; j<=1; ++j) {
for (int k=0; k<=1; ++k) {
for (int l=0; l<=1; ++l) {
nn[0][i][j][k][l].dthp = (nn[1][i][j][k][l].value - nn[0][i][j][k][l].value) * thp_i.inv_dist_;
nn[i][0][j][k][l].dwfr = (nn[i][1][j][k][l].value - nn[i][0][j][k][l].value) * wfr_i.inv_dist_;
nn[i][j][0][k][l].dgfr = (nn[i][j][1][k][l].value - nn[i][j][0][k][l].value) * gfr_i.inv_dist_;
nn[i][j][k][0][l].dalq = (nn[i][j][k][1][l].value - nn[i][j][k][0][l].value) * alq_i.inv_dist_;
nn[i][j][k][l][0].dflo = (nn[i][j][k][l][1].value - nn[i][j][k][l][0].value) * flo_i.inv_dist_;
nn[1][i][j][k][l].dthp = nn[0][i][j][k][l].dthp;
nn[i][1][j][k][l].dwfr = nn[i][0][j][k][l].dwfr;
nn[i][j][1][k][l].dgfr = nn[i][j][0][k][l].dgfr;
nn[i][j][k][1][l].dalq = nn[i][j][k][0][l].dalq;
nn[i][j][k][l][1].dflo = nn[i][j][k][l][0].dflo;
}
}
}
}
Scalar t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
// Remove dimensions one by one
// Example: going from 3D to 2D to 1D, we start by interpolating along
// the z axis first, leaving a 2D problem. Then interpolating along the y
// axis, leaving a 1D, problem, etc.
t2 = flo_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
for (int a=0; a<=1; ++a) {
nn[t][w][g][a][0] = t1*nn[t][w][g][a][0] + t2*nn[t][w][g][a][1];
}
}
}
}
t2 = alq_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
for (int g=0; g<=1; ++g) {
nn[t][w][g][0][0] = t1*nn[t][w][g][0][0] + t2*nn[t][w][g][1][0];
}
}
}
t2 = gfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
for (int w=0; w<=1; ++w) {
nn[t][w][0][0][0] = t1*nn[t][w][0][0][0] + t2*nn[t][w][1][0][0];
}
}
t2 = wfr_i.factor_;
t1 = (1.0-t2);
for (int t=0; t<=1; ++t) {
nn[t][0][0][0][0] = t1*nn[t][0][0][0][0] + t2*nn[t][1][0][0][0];
}
t2 = thp_i.factor_;
t1 = (1.0-t2);
nn[0][0][0][0][0] = t1*nn[0][0][0][0][0] + t2*nn[1][0][0][0][0];
return nn[0][0][0][0][0];
}
template<class Scalar>
detail::VFPEvaluation<Scalar> VFPHelpers<Scalar>::
interpolate(const VFPInjTable& table,
const detail::InterpData<Scalar>& flo_i,
const detail::InterpData<Scalar>& thp_i)
{
//Values and derivatives in a 2D plane
detail::VFPEvaluation<Scalar> nn[2][2];
//Pick out nearest neighbors (nn) to our evaluation point
//The following ladder of for loops will presumably be unrolled by a reasonable compiler.
for (int t=0; t<=1; ++t) {
for (int f=0; f<=1; ++f) {
//Shorthands for indexing
const int ti = thp_i.ind_[t];
const int fi = flo_i.ind_[f];
//Copy element
nn[t][f].value = table(ti,fi);
}
}
//Calculate derivatives
//Note that the derivative of the two end points of a line aligned with the
//"axis of the derivative" are equal
for (int i=0; i<=1; ++i) {
nn[0][i].dthp = (nn[1][i].value - nn[0][i].value) * thp_i.inv_dist_;
nn[i][0].dwfr = -1e100;
nn[i][0].dgfr = -1e100;
nn[i][0].dalq = -1e100;
nn[i][0].dflo = (nn[i][1].value - nn[i][0].value) * flo_i.inv_dist_;
nn[1][i].dthp = nn[0][i].dthp;
nn[i][1].dwfr = nn[i][0].dwfr;
nn[i][1].dgfr = nn[i][0].dgfr;
nn[i][1].dalq = nn[i][0].dalq;
nn[i][1].dflo = nn[i][0].dflo;
}
Scalar t1, t2; //interpolation variables, so that t1 = (1-t) and t2 = t.
// Go from 2D to 1D
t2 = flo_i.factor_;
t1 = (1.0-t2);
nn[0][0] = t1*nn[0][0] + t2*nn[0][1];
nn[1][0] = t1*nn[1][0] + t2*nn[1][1];
// Go from line to point on line
t2 = thp_i.factor_;
t1 = (1.0-t2);
nn[0][0] = t1*nn[0][0] + t2*nn[1][0];
return nn[0][0];
}
template<class Scalar>
detail::VFPEvaluation<Scalar> VFPHelpers<Scalar>::
bhp(const VFPProdTable& table,
const Scalar aqua,
const Scalar liquid,
const Scalar vapour,
const Scalar thp,
const Scalar alq,
const Scalar explicit_wfr,
const Scalar explicit_gfr,
const bool use_vfpexplicit)
{
//Find interpolation variables
Scalar flo = detail::getFlo(table, aqua, liquid, vapour);
Scalar wfr = detail::getWFR(table, aqua, liquid, vapour);
Scalar gfr = detail::getGFR(table, aqua, liquid, vapour);
if (use_vfpexplicit || -flo < table.getFloAxis().front()) {
wfr = explicit_wfr;
gfr = explicit_gfr;
}
//First, find the values to interpolate between
//Recall that flo is negative in Opm, so switch sign.
auto flo_i = findInterpData(-flo, table.getFloAxis());
auto thp_i = findInterpData( thp, table.getTHPAxis());
auto wfr_i = findInterpData( wfr, table.getWFRAxis());
auto gfr_i = findInterpData( gfr, table.getGFRAxis());
auto alq_i = findInterpData( alq, table.getALQAxis());
detail::VFPEvaluation retval = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
return retval;
}
template<class Scalar>
detail::VFPEvaluation<Scalar> VFPHelpers<Scalar>::
bhp(const VFPInjTable& table,
const Scalar aqua,
const Scalar liquid,
const Scalar vapour,
const Scalar thp)
{
//Find interpolation variables
Scalar flo = detail::getFlo(table, aqua, liquid, vapour);
//First, find the values to interpolate between
auto flo_i = findInterpData(flo, table.getFloAxis());
auto thp_i = findInterpData(thp, table.getTHPAxis());
//Then perform the interpolation itself
detail::VFPEvaluation retval = interpolate(table, flo_i, thp_i);
return retval;
}
template<class Scalar>
Scalar VFPHelpers<Scalar>::
findTHP(const std::vector<Scalar>& bhp_array,
const std::vector<double>& thp_array,
Scalar bhp,
const bool find_largest)
{
int nthp = thp_array.size();
Scalar thp = -1e100;
//Check that our thp axis is sorted
assert(std::is_sorted(thp_array.begin(), thp_array.end()));
/**
* Our *interpolated* bhp_array will be montonic increasing for increasing
* THP if our input BHP values are monotonic increasing for increasing
* THP values. However, if we have to *extrapolate* along any of the other
* axes, this guarantee holds no more, and bhp_array may be "random"
*/
if (std::is_sorted(bhp_array.begin(), bhp_array.end())) {
//Target bhp less than all values in array, extrapolate
if (bhp <= bhp_array[0]) {
//TODO: LOG extrapolation
const Scalar& x0 = thp_array[0];
const Scalar& x1 = thp_array[1];
const Scalar& y0 = bhp_array[0];
const Scalar& y1 = bhp_array[1];
thp = findX(x0, x1, y0, y1, bhp);
}
//Target bhp greater than all values in array, extrapolate
else if (bhp > bhp_array[nthp-1]) {
//TODO: LOG extrapolation
const Scalar& x0 = thp_array[nthp-2];
const Scalar& x1 = thp_array[nthp-1];
const Scalar& y0 = bhp_array[nthp-2];
const Scalar& y1 = bhp_array[nthp-1];
thp = findX(x0, x1, y0, y1, bhp);
}
//Target bhp within table ranges, interpolate
else {
//Loop over the values and find min(bhp_array(thp)) == bhp
//so that we maximize the rate.
//Find i so that bhp_array[i-1] <= bhp <= bhp_array[i];
//Assuming a small number of values in bhp_array, this should be quite
//efficient. Other strategies might be bisection, etc.
int i=0;
bool found = false;
for (; i<nthp-1; ++i) {
const Scalar& y0 = bhp_array[i ];
const Scalar& y1 = bhp_array[i+1];
if (y0 < bhp && bhp <= y1) {
found = true;
break;
}
}
//Canary in a coal mine: shouldn't really be required
assert(found == true);
static_cast<void>(found); //Silence compiler warning
const Scalar& x0 = thp_array[i ];
const Scalar& x1 = thp_array[i+1];
const Scalar& y0 = bhp_array[i ];
const Scalar& y1 = bhp_array[i+1];
thp = findX(x0, x1, y0, y1, bhp);
}
}
//bhp_array not sorted, raw search.
else {
//Here we're into damage prevention territory, and there may be any number of
//solutions (including zero). The well is currently not controlled by THP, and
//since we're doing severe extrapolaton we would also like, if possible, to prevent
//it from switcing to THP. Accordingly, if there are multiple solutions, we return
//the value for the intersection corresponding to the largest (smallest) THP-value
//for producers (injectors).
//first check which extrapolations are valid
const bool first_slope_positive = bhp_array[1] >= bhp_array[0];
const bool valid_low = (bhp < bhp_array[0] && first_slope_positive) || (bhp >= bhp_array[0] && !first_slope_positive);
const bool last_slope_positive = bhp_array[nthp-1] >= bhp_array[nthp-2];
const bool valid_high = (bhp > bhp_array[nthp-1] && last_slope_positive) || (bhp <= bhp_array[nthp-1] && !last_slope_positive);
bool found = false;
int array_ix = 0;
if (find_largest){//find intersection corresponding to the largest thp
// high extrap -> table interp -> low extrap
if (valid_high) {
found = true;
array_ix = nthp-2;
} else {
//search backward within table
for (int i = nthp-2; i>=0; --i) {
const Scalar& y0 = bhp_array[i ];
const Scalar& y1 = bhp_array[i+1];
if (std::min(y0, y1) < bhp && bhp <= std::max(y0, y1)) {
found = true;
array_ix = i;
break;
}
}
if (!found && valid_low) {
found = true;
array_ix = 0;
}
}
} else {//find intersection corresponding to the smallest thp
//low extrap -> table interp -> high extrap
if (valid_low) {
found = true;
array_ix = 0;
} else {
//search forward within table
for (int i = 0; i<nthp-1; ++i) {
const Scalar& y0 = bhp_array[i ];
const Scalar& y1 = bhp_array[i+1];
if (std::min(y0, y1) < bhp && bhp <= std::max(y0, y1)) {
found = true;
array_ix = i;
break;
}
}
if (!found && valid_high) {
found = true;
array_ix = nthp-2;
}
}
}
if (found) {
const Scalar& x0 = thp_array[array_ix ];
const Scalar& x1 = thp_array[array_ix+1];
const Scalar& y0 = bhp_array[array_ix ];
const Scalar& y1 = bhp_array[array_ix+1];
thp = findX(x0, x1, y0, y1, bhp);
} else {
// no intersection, just return largest/smallest value in table
if (find_largest) {
thp = thp_array[nthp-1];
} else {
thp = thp_array[0];
}
}
}
return thp;
}
template<class Scalar>
std::pair<Scalar, Scalar> VFPHelpers<Scalar>::
getMinimumBHPCoordinate(const VFPProdTable& table,
const Scalar thp,
const Scalar wfr,
const Scalar gfr,
const Scalar alq)
{
// Given fixed thp, wfr, gfr and alq, this function finds the minimum bhp and returns
// the corresponding pair (-flo_at_bhp_min, bhp_min). No assumption is taken on the
// shape of the function bhp(flo), so all points in the flo-axis is checked.
Scalar flo_at_bhp_min = 0.0; // start by checking flo=0
auto flo_i = findInterpData(flo_at_bhp_min, table.getFloAxis());
auto thp_i = findInterpData( thp, table.getTHPAxis());
auto wfr_i = findInterpData( wfr, table.getWFRAxis());
auto gfr_i = findInterpData( gfr, table.getGFRAxis());
auto alq_i = findInterpData( alq, table.getALQAxis());
detail::VFPEvaluation bhp_i = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
Scalar bhp_min = bhp_i.value;
const std::vector<double>& flos = table.getFloAxis();
for (size_t i = 0; i < flos.size(); ++i) {
flo_i = findInterpData(flos[i], flos);
bhp_i = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
if (bhp_i.value < bhp_min){
bhp_min = bhp_i.value;
flo_at_bhp_min = flos[i];
}
}
// return negative flo
return std::make_pair(-flo_at_bhp_min, bhp_min);
}
template<class Scalar>
std::optional<std::pair<Scalar, Scalar>> VFPHelpers<Scalar>::
intersectWithIPR(const VFPProdTable& table,
const Scalar thp,
const Scalar wfr,
const Scalar gfr,
const Scalar alq,
const Scalar ipr_a,
const Scalar ipr_b,
const std::function<Scalar(const Scalar)>& adjust_bhp)
{
// Given fixed thp, wfr, gfr and alq, this function finds a stable (-flo, bhp)-intersection
// between the ipr-line and bhp(flo) if such an intersection exists. For multiple stable
// intersections, the one corresponding the largest flo is returned.
// The adjust_bhp-function is used to adjust the vfp-table bhp-values to actual bhp-values due
// vfp/well ref-depth differences and/or WVFPDP-related pressure adjustments.
// NOTE: ipr-line is q=b*bhp - a!
// ipr is given for negative flo, so
// flo = -b*bhp + a, i.e., bhp = -(flo-a)/b
auto thp_i = findInterpData( thp, table.getTHPAxis());
auto wfr_i = findInterpData( wfr, table.getWFRAxis());
auto gfr_i = findInterpData( gfr, table.getGFRAxis());
auto alq_i = findInterpData( alq, table.getALQAxis());
if (ipr_b == 0.0) {
// this shouldn't happen, but deal with it to be safe
auto flo_i = findInterpData(ipr_a, table.getFloAxis());
detail::VFPEvaluation bhp_i = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
return std::make_pair(-ipr_a, adjust_bhp(bhp_i.value));
}
// find largest flo (flo_x) for which y = bhp(flo) + (flo-a)/b = 0 and dy/dflo > 0
Scalar flo_x = -1.0;
Scalar flo0, flo1;
Scalar y0, y1;
flo0 = 0.0; // start by checking flo=0
auto flo_i = findInterpData(flo0, table.getFloAxis());
detail::VFPEvaluation bhp_i = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
y0 = adjust_bhp(bhp_i.value) - ipr_a/ipr_b; // +0.0/ipr_b
const std::vector<double>& flos = table.getFloAxis();
for (size_t i = 0; i < flos.size(); ++i) {
flo1 = flos[i];
flo_i = findInterpData(flo1, flos);
bhp_i = interpolate(table, flo_i, thp_i, wfr_i, gfr_i, alq_i);
y1 = adjust_bhp(bhp_i.value) + (flo1 - ipr_a)/ipr_b;
if (y0 < 0 && y1 >= 0){
// crossing with positive slope
Scalar w = -y0/(y1-y0);
w = std::clamp(w, Scalar{0.0}, Scalar{1.0}); // just to be safe (if y0~y1~0)
flo_x = flo0 + w*(flo1 - flo0);
}
flo0 = flo1;
y0 = y1;
}
// return (last) intersection if found (negative flo)
if (flo_x >= 0) {
return std::make_pair(-flo_x, -(flo_x - ipr_a)/ipr_b);
} else {
return std::nullopt;
}
}
namespace detail {
template<class Scalar>
VFPEvaluation<Scalar> operator+(VFPEvaluation<Scalar> lhs, const VFPEvaluation<Scalar>& rhs)
{
lhs.value += rhs.value;
lhs.dthp += rhs.dthp;
lhs.dwfr += rhs.dwfr;
lhs.dgfr += rhs.dgfr;
lhs.dalq += rhs.dalq;
lhs.dflo += rhs.dflo;
return lhs;
}
template<class Scalar>
VFPEvaluation<Scalar> operator-(VFPEvaluation<Scalar> lhs, const VFPEvaluation<Scalar>& rhs)
{
lhs.value -= rhs.value;
lhs.dthp -= rhs.dthp;
lhs.dwfr -= rhs.dwfr;
lhs.dgfr -= rhs.dgfr;
lhs.dalq -= rhs.dalq;
lhs.dflo -= rhs.dflo;
return lhs;
}
template<class Scalar>
VFPEvaluation<Scalar> operator*(Scalar lhs, const VFPEvaluation<Scalar>& rhs)
{
VFPEvaluation<Scalar> retval;
retval.value = rhs.value * lhs;
retval.dthp = rhs.dthp * lhs;
retval.dwfr = rhs.dwfr * lhs;
retval.dgfr = rhs.dgfr * lhs;
retval.dalq = rhs.dalq * lhs;
retval.dflo = rhs.dflo * lhs;
return retval;
}
template <typename T>
T getFlo(const VFPProdTable& table,
const T& aqua,
const T& liquid,
const T& vapour)
{
auto type = table.getFloType();
switch (type) {
case VFPProdTable::FLO_TYPE::FLO_OIL:
//Oil = liquid phase
return liquid;
case VFPProdTable::FLO_TYPE::FLO_LIQ:
//Liquid = aqua + liquid phases
return aqua + liquid;
case VFPProdTable::FLO_TYPE::FLO_GAS:
//Gas = vapor phase
return vapour;
default:
throw std::logic_error("Invalid FLO_TYPE");
}
}
template <typename T>
T getFlo(const VFPInjTable& table,
const T& aqua,
const T& liquid,
const T& vapour)
{
auto type = table.getFloType();
switch (type) {
case VFPInjTable::FLO_TYPE::FLO_OIL:
//Oil = liquid phase
return liquid;
case VFPInjTable::FLO_TYPE::FLO_WAT:
//Liquid = aqua phase
return aqua;
case VFPInjTable::FLO_TYPE::FLO_GAS:
//Gas = vapor phase
return vapour;
default:
throw std::logic_error("Invalid FLO_TYPE");
}
}
static constexpr double threshold = 1e-12;
template <typename T>
T getWFR(const VFPProdTable& table,
const T& aqua,
const T& liquid,
const T& vapour)
{
auto type = table.getWFRType();
switch(type) {
case VFPProdTable::WFR_TYPE::WFR_WOR: {
//Water-oil ratio = water / oil
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-liquid));
}
case VFPProdTable::WFR_TYPE::WFR_WCT:
//Water cut = water / (water + oil)
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-aqua - liquid));
case VFPProdTable::WFR_TYPE::WFR_WGR:
//Water-gas ratio = water / gas
return chopNegativeValues(-aqua) / max(threshold, chopNegativeValues(-vapour));
default:
throw std::logic_error("Invalid WFR_TYPE");
}
}
template <typename T>
T getGFR(const VFPProdTable& table,
const T& aqua,
const T& liquid,
const T& vapour)
{
auto type = table.getGFRType();
switch(type) {
case VFPProdTable::GFR_TYPE::GFR_GOR:
// Gas-oil ratio = gas / oil
return chopNegativeValues(-vapour) / max(threshold, chopNegativeValues(-liquid));
case VFPProdTable::GFR_TYPE::GFR_GLR:
// Gas-liquid ratio = gas / (oil + water)
return chopNegativeValues(-vapour) / max(threshold, chopNegativeValues(-liquid - aqua));
case VFPProdTable::GFR_TYPE::GFR_OGR:
// Oil-gas ratio = oil / gas
return chopNegativeValues(-liquid) / max(threshold, chopNegativeValues(-vapour));
default:
throw std::logic_error("Invalid GFR_TYPE");
}
}
template <typename T>
const T& getTable(const std::map<int, std::reference_wrapper<const T>>& tables, int table_id)
{
auto entry = tables.find(table_id);
if (entry == tables.end()) {
OPM_THROW(std::invalid_argument,
"Nonexistent VFP table " +
std::to_string(table_id) + " referenced.");
}
else {
return entry->second.get();
}
}
template <>
VFPProdTable::FLO_TYPE getType(const VFPProdTable& table)
{
return table.getFloType();
}
template <>
VFPProdTable::WFR_TYPE getType(const VFPProdTable& table)
{
return table.getWFRType();
}
template <>
VFPProdTable::GFR_TYPE getType(const VFPProdTable& table)
{
return table.getGFRType();
}
/**
* Returns the type variable for FLO for injection tables
*/
template <>
VFPInjTable::FLO_TYPE getType(const VFPInjTable& table)
{
return table.getFloType();
}
template const VFPInjTable&
getTable(const std::map<int, std::reference_wrapper<const VFPInjTable>>&, int);
template const VFPProdTable&
getTable(const std::map<int, std::reference_wrapper<const VFPProdTable>>&, int);
#define INSTANTIATE(...) \
template __VA_ARGS__ \
getFlo(const VFPInjTable&, const __VA_ARGS__&, \
const __VA_ARGS__&, const __VA_ARGS__&); \
template __VA_ARGS__ \
getFlo(const VFPProdTable&, const __VA_ARGS__&, \
const __VA_ARGS__&, const __VA_ARGS__&); \
template __VA_ARGS__ \
getGFR(const VFPProdTable&, const __VA_ARGS__&, \
const __VA_ARGS__&, const __VA_ARGS__&); \
template __VA_ARGS__ \
getWFR(const VFPProdTable&, const __VA_ARGS__&, \
const __VA_ARGS__&, const __VA_ARGS__&);
#define INSTANTIATE_TYPE(T) \
INSTANTIATE(T) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 4u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 5u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 6u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 7u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 8u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 9u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 10u>) \
INSTANTIATE(DenseAd::Evaluation<T, -1, 11u>) \
INSTANTIATE(DenseAd::Evaluation<T, 3, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 4, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 5, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 6, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 7, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 8, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 9, 0u>) \
INSTANTIATE(DenseAd::Evaluation<T, 10, 0u>)
INSTANTIATE_TYPE(double)
#if FLOW_INSTANTIATE_FLOAT
INSTANTIATE_TYPE(float)
#endif
} // namespace detail
template class VFPHelpers<double>;
#if FLOW_INSTANTIATE_FLOAT
template class VFPHelpers<float>;
#endif
} // namespace Opm