mirror of
https://github.com/OPM/opm-simulators.git
synced 2025-01-27 18:26:25 -06:00
fa199461b5
In particular * Split some long lines * Reverse conditions to reduce nesting * Mark potentially unused arguments as [[maybe_unused]] * Try to remove redundant calculations * Mark some objets 'const' where possible
1942 lines
86 KiB
C++
1942 lines
86 KiB
C++
/*
|
|
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
|
|
Copyright 2017 Statoil ASA.
|
|
Copyright 2018 IRIS
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
// Improve IDE experience
|
|
#ifndef OPM_WELLINTERFACE_HEADER_INCLUDED
|
|
#include <config.h>
|
|
#define OPM_WELLINTERFACE_IMPL_HEADER_INCLUDED
|
|
#include <opm/simulators/wells/WellInterface.hpp>
|
|
#endif
|
|
|
|
#include <opm/common/Exceptions.hpp>
|
|
|
|
#include <opm/input/eclipse/Schedule/ScheduleTypes.hpp>
|
|
#include <opm/input/eclipse/Schedule/Well/WDFAC.hpp>
|
|
|
|
#include <opm/simulators/utils/DeferredLoggingErrorHelpers.hpp>
|
|
|
|
#include <opm/simulators/wells/GroupState.hpp>
|
|
#include <opm/simulators/wells/TargetCalculator.hpp>
|
|
#include <opm/simulators/wells/WellBhpThpCalculator.hpp>
|
|
#include <opm/simulators/wells/WellHelpers.hpp>
|
|
|
|
#include <dune/common/version.hh>
|
|
|
|
#include <cassert>
|
|
#include <cstddef>
|
|
#include <utility>
|
|
|
|
#include <fmt/format.h>
|
|
|
|
namespace Opm
|
|
{
|
|
|
|
|
|
template<typename TypeTag>
|
|
WellInterface<TypeTag>::
|
|
WellInterface(const Well& well,
|
|
const ParallelWellInfo<Scalar>& pw_info,
|
|
const int time_step,
|
|
const ModelParameters& param,
|
|
const RateConverterType& rate_converter,
|
|
const int pvtRegionIdx,
|
|
const int num_components,
|
|
const int num_phases,
|
|
const int index_of_well,
|
|
const std::vector<PerforationData<Scalar>>& perf_data)
|
|
: WellInterfaceIndices<FluidSystem,Indices>(well,
|
|
pw_info,
|
|
time_step,
|
|
rate_converter,
|
|
pvtRegionIdx,
|
|
num_components,
|
|
num_phases,
|
|
index_of_well,
|
|
perf_data)
|
|
, param_(param)
|
|
{
|
|
connectionRates_.resize(this->number_of_perforations_);
|
|
|
|
if constexpr (has_solvent || has_zFraction) {
|
|
if (well.isInjector()) {
|
|
auto injectorType = this->well_ecl_.injectorType();
|
|
if (injectorType == InjectorType::GAS) {
|
|
this->wsolvent_ = this->well_ecl_.getSolventFraction();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
init(const PhaseUsage* phase_usage_arg,
|
|
const std::vector<Scalar>& /* depth_arg */,
|
|
const Scalar gravity_arg,
|
|
const int /* num_cells */,
|
|
const std::vector<Scalar>& B_avg,
|
|
const bool changed_to_open_this_step)
|
|
{
|
|
this->phase_usage_ = phase_usage_arg;
|
|
this->gravity_ = gravity_arg;
|
|
B_avg_ = B_avg;
|
|
this->changed_to_open_this_step_ = changed_to_open_this_step;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
wpolymer() const
|
|
{
|
|
if constexpr (has_polymer) {
|
|
return this->wpolymer_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
wfoam() const
|
|
{
|
|
if constexpr (has_foam) {
|
|
return this->wfoam_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
wsalt() const
|
|
{
|
|
if constexpr (has_brine) {
|
|
return this->wsalt_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
wmicrobes() const
|
|
{
|
|
if constexpr (has_micp) {
|
|
return this->wmicrobes_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
woxygen() const
|
|
{
|
|
if constexpr (has_micp) {
|
|
return this->woxygen_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
// The urea injection concentration is scaled down by a factor of 10, since its value
|
|
// can be much bigger than 1 (not doing this slows the simulations). The
|
|
// corresponding values are scaled accordingly in blackoilmicpmodules.hh when computing
|
|
// the reactions and also when writing the output files (vtk and eclipse format, i.e.,
|
|
// vtkblackoilmicpmodule.hh and ecloutputblackoilmodel.hh respectively).
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
wurea() const
|
|
{
|
|
if constexpr (has_micp) {
|
|
return this->wurea_();
|
|
}
|
|
|
|
return 0.0;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
updateWellControl(const Simulator& simulator,
|
|
const IndividualOrGroup iog,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger) /* const */
|
|
{
|
|
if (stoppedOrZeroRateTarget(simulator, well_state, deferred_logger)) {
|
|
return false;
|
|
}
|
|
|
|
const auto& summaryState = simulator.vanguard().summaryState();
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
const auto& well = this->well_ecl_;
|
|
auto& ws = well_state.well(this->index_of_well_);
|
|
std::string from;
|
|
if (well.isInjector()) {
|
|
from = WellInjectorCMode2String(ws.injection_cmode);
|
|
} else {
|
|
from = WellProducerCMode2String(ws.production_cmode);
|
|
}
|
|
bool oscillating = std::count(this->well_control_log_.begin(), this->well_control_log_.end(), from) >= param_.max_number_of_well_switches_;
|
|
|
|
if (oscillating) {
|
|
// only output frist time
|
|
bool output = std::count(this->well_control_log_.begin(), this->well_control_log_.end(), from) == param_.max_number_of_well_switches_;
|
|
if (output) {
|
|
std::ostringstream ss;
|
|
ss << " The control mode for well " << this->name()
|
|
<< " is oscillating\n"
|
|
<< " We don't allow for more than "
|
|
<< param_.max_number_of_well_switches_
|
|
<< " switches. The control is kept at " << from;
|
|
deferred_logger.info(ss.str());
|
|
// add one more to avoid outputting the same info again
|
|
this->well_control_log_.push_back(from);
|
|
}
|
|
return false;
|
|
}
|
|
bool changed = false;
|
|
if (iog == IndividualOrGroup::Individual) {
|
|
changed = this->checkIndividualConstraints(ws, summaryState, deferred_logger);
|
|
} else if (iog == IndividualOrGroup::Group) {
|
|
changed = this->checkGroupConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
|
|
} else {
|
|
assert(iog == IndividualOrGroup::Both);
|
|
changed = this->checkConstraints(well_state, group_state, schedule, summaryState, deferred_logger);
|
|
}
|
|
Parallel::Communication cc = simulator.vanguard().grid().comm();
|
|
// checking whether control changed
|
|
if (changed) {
|
|
std::string to;
|
|
if (well.isInjector()) {
|
|
to = WellInjectorCMode2String(ws.injection_cmode);
|
|
} else {
|
|
to = WellProducerCMode2String(ws.production_cmode);
|
|
}
|
|
std::ostringstream ss;
|
|
ss << " Switching control mode for well " << this->name()
|
|
<< " from " << from
|
|
<< " to " << to;
|
|
if (cc.size() > 1) {
|
|
ss << " on rank " << cc.rank();
|
|
}
|
|
deferred_logger.debug(ss.str());
|
|
|
|
this->well_control_log_.push_back(from);
|
|
updateWellStateWithTarget(simulator, group_state, well_state, deferred_logger);
|
|
updatePrimaryVariables(simulator, well_state, deferred_logger);
|
|
}
|
|
|
|
return changed;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
updateWellControlAndStatusLocalIteration(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
const Scalar wqTotal,
|
|
DeferredLogger& deferred_logger,
|
|
const bool fixed_control,
|
|
const bool fixed_status)
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
auto& ws = well_state.well(this->index_of_well_);
|
|
std::string from;
|
|
if (this->isInjector()) {
|
|
from = WellInjectorCMode2String(ws.injection_cmode);
|
|
} else {
|
|
from = WellProducerCMode2String(ws.production_cmode);
|
|
}
|
|
const bool oscillating = std::count(this->well_control_log_.begin(), this->well_control_log_.end(), from) >= param_.max_number_of_well_switches_;
|
|
|
|
if (oscillating || this->wellUnderZeroRateTarget(simulator, well_state, deferred_logger) || !(this->well_ecl_.getStatus() == WellStatus::OPEN)) {
|
|
return false;
|
|
}
|
|
|
|
const Scalar sgn = this->isInjector() ? 1.0 : -1.0;
|
|
if (!this->wellIsStopped()){
|
|
if (wqTotal*sgn <= 0.0 && !fixed_status){
|
|
this->stopWell();
|
|
return true;
|
|
} else {
|
|
bool changed = false;
|
|
if (!fixed_control) {
|
|
const bool hasGroupControl = this->isInjector() ? inj_controls.hasControl(Well::InjectorCMode::GRUP) :
|
|
prod_controls.hasControl(Well::ProducerCMode::GRUP);
|
|
|
|
changed = this->checkIndividualConstraints(ws, summary_state, deferred_logger, inj_controls, prod_controls);
|
|
if (hasGroupControl) {
|
|
changed = changed || this->checkGroupConstraints(well_state, group_state, schedule, summary_state,deferred_logger);
|
|
}
|
|
|
|
if (changed) {
|
|
const bool thp_controlled = this->isInjector() ? ws.injection_cmode == Well::InjectorCMode::THP :
|
|
ws.production_cmode == Well::ProducerCMode::THP;
|
|
if (!thp_controlled){
|
|
// don't call for thp since this might trigger additional local solve
|
|
updateWellStateWithTarget(simulator, group_state, well_state, deferred_logger);
|
|
} else {
|
|
ws.thp = this->getTHPConstraint(summary_state);
|
|
}
|
|
updatePrimaryVariables(simulator, well_state, deferred_logger);
|
|
}
|
|
}
|
|
return changed;
|
|
}
|
|
} else if (!fixed_status){
|
|
// well is stopped, check if current bhp allows reopening
|
|
const Scalar bhp = well_state.well(this->index_of_well_).bhp;
|
|
Scalar prod_limit = prod_controls.bhp_limit;
|
|
Scalar inj_limit = inj_controls.bhp_limit;
|
|
const bool has_thp = this->wellHasTHPConstraints(summary_state);
|
|
if (has_thp){
|
|
std::vector<Scalar> rates(this->num_components_);
|
|
if (this->isInjector()){
|
|
const Scalar bhp_thp = WellBhpThpCalculator(*this).
|
|
calculateBhpFromThp(well_state, rates,
|
|
this->well_ecl_,
|
|
summary_state,
|
|
this->getRefDensity(),
|
|
deferred_logger);
|
|
inj_limit = std::min(bhp_thp, static_cast<Scalar>(inj_controls.bhp_limit));
|
|
} else {
|
|
// if the well can operate, it must at least be able to produce
|
|
// at the lowest bhp of the bhp-curve (explicit fractions)
|
|
const Scalar bhp_min = WellBhpThpCalculator(*this).
|
|
calculateMinimumBhpFromThp(well_state,
|
|
this->well_ecl_,
|
|
summary_state,
|
|
this->getRefDensity());
|
|
prod_limit = std::max(bhp_min, static_cast<Scalar>(prod_controls.bhp_limit));
|
|
}
|
|
}
|
|
const Scalar bhp_diff = (this->isInjector())? inj_limit - bhp: bhp - prod_limit;
|
|
if (bhp_diff > 0){
|
|
this->openWell();
|
|
well_state.well(this->index_of_well_).bhp = (this->isInjector())? inj_limit : prod_limit;
|
|
if (has_thp) {
|
|
well_state.well(this->index_of_well_).thp = this->getTHPConstraint(summary_state);
|
|
}
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
wellTesting(const Simulator& simulator,
|
|
const double simulation_time,
|
|
/* const */ WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
WellTestState& well_test_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
deferred_logger.info(" well " + this->name() + " is being tested");
|
|
|
|
WellState<Scalar> well_state_copy = well_state;
|
|
auto& ws = well_state_copy.well(this->indexOfWell());
|
|
|
|
updateWellStateWithTarget(simulator, group_state, well_state_copy, deferred_logger);
|
|
calculateExplicitQuantities(simulator, well_state_copy, deferred_logger);
|
|
updatePrimaryVariables(simulator, well_state_copy, deferred_logger);
|
|
initPrimaryVariablesEvaluation();
|
|
|
|
if (this->isProducer()) {
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
const auto report_step = simulator.episodeIndex();
|
|
const auto& glo = schedule.glo(report_step);
|
|
if (glo.active()) {
|
|
gliftBeginTimeStepWellTestUpdateALQ(simulator, well_state_copy, deferred_logger);
|
|
}
|
|
}
|
|
|
|
WellTestState welltest_state_temp;
|
|
|
|
bool testWell = true;
|
|
// if a well is closed because all completions are closed, we need to check each completion
|
|
// individually. We first open all completions, then we close one by one by calling updateWellTestState
|
|
// untill the number of closed completions do not increase anymore.
|
|
while (testWell) {
|
|
const std::size_t original_number_closed_completions = welltest_state_temp.num_closed_completions();
|
|
bool converged = solveWellForTesting(simulator, well_state_copy, group_state, deferred_logger);
|
|
if (!converged) {
|
|
const auto msg = fmt::format("WTEST: Well {} is not solvable (physical)", this->name());
|
|
deferred_logger.debug(msg);
|
|
return;
|
|
}
|
|
|
|
|
|
updateWellOperability(simulator, well_state_copy, deferred_logger);
|
|
if ( !this->isOperableAndSolvable() ) {
|
|
const auto msg = fmt::format("WTEST: Well {} is not operable (physical)", this->name());
|
|
deferred_logger.debug(msg);
|
|
return;
|
|
}
|
|
std::vector<Scalar> potentials;
|
|
try {
|
|
computeWellPotentials(simulator, well_state_copy, potentials, deferred_logger);
|
|
} catch (const std::exception& e) {
|
|
const std::string msg = fmt::format("well {}: computeWellPotentials() "
|
|
"failed during testing for re-opening: ",
|
|
this->name(), e.what());
|
|
deferred_logger.info(msg);
|
|
return;
|
|
}
|
|
const int np = well_state_copy.numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
ws.well_potentials[p] = std::max(Scalar{0.0}, potentials[p]);
|
|
}
|
|
const bool under_zero_target = this->wellUnderZeroGroupRateTarget(simulator, well_state_copy, deferred_logger);
|
|
this->updateWellTestState(well_state_copy.well(this->indexOfWell()),
|
|
simulation_time,
|
|
/*writeMessageToOPMLog=*/ false,
|
|
under_zero_target,
|
|
welltest_state_temp,
|
|
deferred_logger);
|
|
this->closeCompletions(welltest_state_temp);
|
|
|
|
// Stop testing if the well is closed or shut due to all completions shut
|
|
// Also check if number of completions has increased. If the number of closed completions do not increased
|
|
// we stop the testing.
|
|
// TODO: it can be tricky here, if the well is shut/closed due to other reasons
|
|
if ( welltest_state_temp.num_closed_wells() > 0 ||
|
|
(original_number_closed_completions == welltest_state_temp.num_closed_completions()) ) {
|
|
testWell = false; // this terminates the while loop
|
|
}
|
|
}
|
|
|
|
// update wellTestState if the well test succeeds
|
|
if (!welltest_state_temp.well_is_closed(this->name())) {
|
|
well_test_state.open_well(this->name());
|
|
|
|
std::string msg = std::string("well ") + this->name() + std::string(" is re-opened");
|
|
deferred_logger.info(msg);
|
|
|
|
// also reopen completions
|
|
for (auto& completion : this->well_ecl_.getCompletions()) {
|
|
if (!welltest_state_temp.completion_is_closed(this->name(), completion.first))
|
|
well_test_state.open_completion(this->name(), completion.first);
|
|
}
|
|
// set the status of the well_state to open
|
|
ws.open();
|
|
well_state = well_state_copy;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
iterateWellEquations(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
const auto inj_controls = this->well_ecl_.isInjector() ? this->well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
|
|
const auto prod_controls = this->well_ecl_.isProducer() ? this->well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
|
|
bool converged = false;
|
|
try {
|
|
// TODO: the following two functions will be refactored to be one to reduce the code duplication
|
|
if (!this->param_.local_well_solver_control_switching_){
|
|
converged = this->iterateWellEqWithControl(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
} else {
|
|
if (this->param_.use_implicit_ipr_ && this->well_ecl_.isProducer() && this->wellHasTHPConstraints(summary_state) && (this->well_ecl_.getStatus() == WellStatus::OPEN)) {
|
|
converged = solveWellWithTHPConstraint(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
} else {
|
|
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
} catch (NumericalProblem& e ) {
|
|
const std::string msg = "Inner well iterations failed for well " + this->name() + " Treat the well as unconverged. ";
|
|
deferred_logger.warning("INNER_ITERATION_FAILED", msg);
|
|
converged = false;
|
|
}
|
|
return converged;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
solveWellWithTHPConstraint(const Simulator& simulator,
|
|
const double dt,
|
|
const Well::InjectionControls& inj_controls,
|
|
const Well::ProductionControls& prod_controls,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
bool is_operable = true;
|
|
bool converged = true;
|
|
auto& ws = well_state.well(this->index_of_well_);
|
|
// if well is stopped, check if we can reopen
|
|
if (this->wellIsStopped()) {
|
|
this->openWell();
|
|
auto bhp_target = estimateOperableBhp(simulator, dt, well_state, summary_state, deferred_logger);
|
|
if (!bhp_target.has_value()) {
|
|
// no intersection with ipr
|
|
const auto msg = fmt::format("estimateOperableBhp: Did not find operable BHP for well {}", this->name());
|
|
deferred_logger.debug(msg);
|
|
is_operable = false;
|
|
// solve with zero rates
|
|
solveWellWithZeroRate(simulator, dt, well_state, deferred_logger);
|
|
this->stopWell();
|
|
} else {
|
|
// solve well with the estimated target bhp (or limit)
|
|
ws.thp = this->getTHPConstraint(summary_state);
|
|
const Scalar bhp = std::max(bhp_target.value(),
|
|
static_cast<Scalar>(prod_controls.bhp_limit));
|
|
solveWellWithBhp(simulator, dt, bhp, well_state, deferred_logger);
|
|
}
|
|
}
|
|
// solve well-equation
|
|
if (is_operable) {
|
|
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
}
|
|
|
|
const bool isThp = ws.production_cmode == Well::ProducerCMode::THP;
|
|
// check stability of solution under thp-control
|
|
if (converged && !stoppedOrZeroRateTarget(simulator, well_state, deferred_logger) && isThp) {
|
|
auto rates = well_state.well(this->index_of_well_).surface_rates;
|
|
this->adaptRatesForVFP(rates);
|
|
this->updateIPRImplicit(simulator, well_state, deferred_logger);
|
|
bool is_stable = WellBhpThpCalculator(*this).isStableSolution(well_state, this->well_ecl_, rates, summary_state);
|
|
if (!is_stable) {
|
|
// solution converged to an unstable point!
|
|
this->operability_status_.use_vfpexplicit = true;
|
|
auto bhp_stable = WellBhpThpCalculator(*this).estimateStableBhp(well_state, this->well_ecl_, rates, this->getRefDensity(), summary_state);
|
|
// if we find an intersection with a sufficiently lower bhp, re-solve equations
|
|
const Scalar reltol = 1e-3;
|
|
const Scalar cur_bhp = ws.bhp;
|
|
if (bhp_stable.has_value() && cur_bhp - bhp_stable.value() > cur_bhp*reltol){
|
|
const auto msg = fmt::format("Well {} converged to an unstable solution, re-solving", this->name());
|
|
deferred_logger.debug(msg);
|
|
solveWellWithBhp(simulator, dt, bhp_stable.value(), well_state, deferred_logger);
|
|
// re-solve with hopefully good initial guess
|
|
ws.thp = this->getTHPConstraint(summary_state);
|
|
converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!converged) {
|
|
// Well did not converge, switch to explicit fractions
|
|
this->operability_status_.use_vfpexplicit = true;
|
|
this->openWell();
|
|
auto bhp_target = estimateOperableBhp(simulator, dt, well_state, summary_state, deferred_logger);
|
|
if (!bhp_target.has_value()) {
|
|
// well can't operate using explicit fractions
|
|
is_operable = false;
|
|
// solve with zero rate
|
|
converged = solveWellWithZeroRate(simulator, dt, well_state, deferred_logger);
|
|
this->stopWell();
|
|
} else {
|
|
// solve well with the estimated target bhp (or limit)
|
|
const Scalar bhp = std::max(bhp_target.value(),
|
|
static_cast<Scalar>(prod_controls.bhp_limit));
|
|
solveWellWithBhp(simulator, dt, bhp, well_state, deferred_logger);
|
|
ws.thp = this->getTHPConstraint(summary_state);
|
|
converged = this->iterateWellEqWithSwitching(simulator, dt,
|
|
inj_controls,
|
|
prod_controls,
|
|
well_state,
|
|
group_state,
|
|
deferred_logger);
|
|
}
|
|
}
|
|
// update operability
|
|
is_operable = is_operable && !this->wellIsStopped();
|
|
this->operability_status_.can_obtain_bhp_with_thp_limit = is_operable;
|
|
this->operability_status_.obey_thp_limit_under_bhp_limit = is_operable;
|
|
return converged;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::optional<typename WellInterface<TypeTag>::Scalar>
|
|
WellInterface<TypeTag>::
|
|
estimateOperableBhp(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const SummaryState& summary_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// Given an unconverged well or closed well, estimate an operable bhp (if any)
|
|
// Get minimal bhp from vfp-curve
|
|
Scalar bhp_min = WellBhpThpCalculator(*this).calculateMinimumBhpFromThp(well_state, this->well_ecl_, summary_state, this->getRefDensity());
|
|
// Solve
|
|
const bool converged = solveWellWithBhp(simulator, dt, bhp_min, well_state, deferred_logger);
|
|
if (!converged || this->wellIsStopped()) {
|
|
return std::nullopt;
|
|
}
|
|
this->updateIPRImplicit(simulator, well_state, deferred_logger);
|
|
auto rates = well_state.well(this->index_of_well_).surface_rates;
|
|
this->adaptRatesForVFP(rates);
|
|
return WellBhpThpCalculator(*this).estimateStableBhp(well_state, this->well_ecl_, rates, this->getRefDensity(), summary_state);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
solveWellWithBhp(const Simulator& simulator,
|
|
const double dt,
|
|
const Scalar bhp,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// Solve a well using single bhp-constraint (but close if not operable under this)
|
|
auto group_state = GroupState<Scalar>(); // empty group
|
|
auto inj_controls = Well::InjectionControls(0);
|
|
auto prod_controls = Well::ProductionControls(0);
|
|
auto& ws = well_state.well(this->index_of_well_);
|
|
auto cmode_inj = ws.injection_cmode;
|
|
auto cmode_prod = ws.production_cmode;
|
|
if (this->isInjector()) {
|
|
inj_controls.addControl(Well::InjectorCMode::BHP);
|
|
inj_controls.bhp_limit = bhp;
|
|
inj_controls.cmode = Well::InjectorCMode::BHP;
|
|
ws.injection_cmode = Well::InjectorCMode::BHP;
|
|
} else {
|
|
prod_controls.addControl(Well::ProducerCMode::BHP);
|
|
prod_controls.bhp_limit = bhp;
|
|
prod_controls.cmode = Well::ProducerCMode::BHP;
|
|
ws.production_cmode = Well::ProducerCMode::BHP;
|
|
}
|
|
// update well-state
|
|
ws.bhp = bhp;
|
|
// solve
|
|
const bool converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger, /*fixed_control*/true);
|
|
ws.injection_cmode = cmode_inj;
|
|
ws.production_cmode = cmode_prod;
|
|
return converged;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
solveWellWithZeroRate(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// Solve a well as stopped
|
|
const auto well_status_orig = this->wellStatus_;
|
|
this->stopWell();
|
|
|
|
auto group_state = GroupState<Scalar>(); // empty group
|
|
auto inj_controls = Well::InjectionControls(0);
|
|
auto prod_controls = Well::ProductionControls(0);
|
|
const bool converged = this->iterateWellEqWithSwitching(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger, /*fixed_control*/true, /*fixed_status*/ true);
|
|
this->wellStatus_ = well_status_orig;
|
|
return converged;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
solveWellForTesting(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// keep a copy of the original well state
|
|
const WellState<Scalar> well_state0 = well_state;
|
|
const double dt = simulator.timeStepSize();
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
const bool has_thp_limit = this->wellHasTHPConstraints(summary_state);
|
|
bool converged;
|
|
if (has_thp_limit) {
|
|
well_state.well(this->indexOfWell()).production_cmode = Well::ProducerCMode::THP;
|
|
converged = gliftBeginTimeStepWellTestIterateWellEquations(
|
|
simulator, dt, well_state, group_state, deferred_logger);
|
|
}
|
|
else {
|
|
well_state.well(this->indexOfWell()).production_cmode = Well::ProducerCMode::BHP;
|
|
converged = iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
|
|
}
|
|
if (converged) {
|
|
deferred_logger.debug("WellTest: Well equation for well " + this->name() + " converged");
|
|
return true;
|
|
}
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
deferred_logger.debug("WellTest: Well equation for well " + this->name() + " failed converging in "
|
|
+ std::to_string(max_iter) + " iterations");
|
|
well_state = well_state0;
|
|
return false;
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
solveWellEquation(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
if (!this->isOperableAndSolvable() && !this->wellIsStopped())
|
|
return;
|
|
|
|
// keep a copy of the original well state
|
|
const WellState<Scalar> well_state0 = well_state;
|
|
const double dt = simulator.timeStepSize();
|
|
bool converged = iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
|
|
|
|
// Newly opened wells with THP control sometimes struggles to
|
|
// converge due to bad initial guess. Or due to the simple fact
|
|
// that the well needs to change to another control.
|
|
// We therefore try to solve the well with BHP control to get
|
|
// an better initial guess.
|
|
// If the well is supposed to operate under THP control
|
|
// "updateWellControl" will switch it back to THP later.
|
|
if (!converged) {
|
|
auto& ws = well_state.well(this->indexOfWell());
|
|
bool thp_control = false;
|
|
if (this->well_ecl_.isInjector()) {
|
|
thp_control = ws.injection_cmode == Well::InjectorCMode::THP;
|
|
if (thp_control) {
|
|
ws.injection_cmode = Well::InjectorCMode::BHP;
|
|
this->well_control_log_.push_back(WellInjectorCMode2String(Well::InjectorCMode::THP));
|
|
}
|
|
} else {
|
|
thp_control = ws.production_cmode == Well::ProducerCMode::THP;
|
|
if (thp_control) {
|
|
ws.production_cmode = Well::ProducerCMode::BHP;
|
|
this->well_control_log_.push_back(WellProducerCMode2String(Well::ProducerCMode::THP));
|
|
}
|
|
}
|
|
if (thp_control) {
|
|
const std::string msg = std::string("The newly opened well ") + this->name()
|
|
+ std::string(" with THP control did not converge during inner iterations, we try again with bhp control");
|
|
deferred_logger.debug(msg);
|
|
converged = this->iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (!converged) {
|
|
const int max_iter = param_.max_welleq_iter_;
|
|
deferred_logger.debug("Compute initial well solution for well " + this->name() + ". Failed to converge in "
|
|
+ std::to_string(max_iter) + " iterations");
|
|
well_state = well_state0;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
assembleWellEq(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
prepareWellBeforeAssembling(simulator, dt, well_state, group_state, deferred_logger);
|
|
assembleWellEqWithoutIteration(simulator, dt, well_state, group_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
assembleWellEqWithoutIteration(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
const auto inj_controls = this->well_ecl_.isInjector() ? this->well_ecl_.injectionControls(summary_state) : Well::InjectionControls(0);
|
|
const auto prod_controls = this->well_ecl_.isProducer() ? this->well_ecl_.productionControls(summary_state) : Well::ProductionControls(0);
|
|
// TODO: the reason to have inj_controls and prod_controls in the arguments, is that we want to change the control used for the well functions
|
|
// TODO: maybe we can use std::optional or pointers to simplify here
|
|
assembleWellEqWithoutIteration(simulator, dt, inj_controls, prod_controls, well_state, group_state, deferred_logger);
|
|
}
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
prepareWellBeforeAssembling(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const bool old_well_operable = this->operability_status_.isOperableAndSolvable();
|
|
|
|
if (param_.check_well_operability_iter_)
|
|
checkWellOperability(simulator, well_state, deferred_logger);
|
|
|
|
// only use inner well iterations for the first newton iterations.
|
|
const int iteration_idx = simulator.model().newtonMethod().numIterations();
|
|
if (iteration_idx < param_.max_niter_inner_well_iter_ || this->well_ecl_.isMultiSegment()) {
|
|
this->operability_status_.solvable = true;
|
|
bool converged = this->iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
|
|
|
|
// unsolvable wells are treated as not operable and will not be solved for in this iteration.
|
|
if (!converged) {
|
|
if (param_.shut_unsolvable_wells_)
|
|
this->operability_status_.solvable = false;
|
|
}
|
|
}
|
|
if (this->operability_status_.has_negative_potentials) {
|
|
auto well_state_copy = well_state;
|
|
std::vector<Scalar> potentials;
|
|
try {
|
|
computeWellPotentials(simulator, well_state_copy, potentials, deferred_logger);
|
|
} catch (const std::exception& e) {
|
|
const std::string msg = fmt::format("well {}: computeWellPotentials() failed "
|
|
"during attempt to recompute potentials for well: ",
|
|
this->name(), e.what());
|
|
deferred_logger.info(msg);
|
|
this->operability_status_.has_negative_potentials = true;
|
|
}
|
|
auto& ws = well_state.well(this->indexOfWell());
|
|
const int np = well_state.numPhases();
|
|
for (int p = 0; p < np; ++p) {
|
|
ws.well_potentials[p] = std::max(Scalar{0.0}, potentials[p]);
|
|
}
|
|
}
|
|
this->changed_to_open_this_step_ = false;
|
|
const bool well_operable = this->operability_status_.isOperableAndSolvable();
|
|
|
|
if (!well_operable && old_well_operable) {
|
|
deferred_logger.info(" well " + this->name() + " gets STOPPED during iteration ");
|
|
this->stopWell();
|
|
changed_to_stopped_this_step_ = true;
|
|
} else if (well_operable && !old_well_operable) {
|
|
deferred_logger.info(" well " + this->name() + " gets REVIVED during iteration ");
|
|
this->openWell();
|
|
changed_to_stopped_this_step_ = false;
|
|
this->changed_to_open_this_step_ = true;
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::addCellRates(RateVector& rates, int cellIdx) const
|
|
{
|
|
if(!this->isOperableAndSolvable() && !this->wellIsStopped())
|
|
return;
|
|
|
|
for (int perfIdx = 0; perfIdx < this->number_of_perforations_; ++perfIdx) {
|
|
if (this->cells()[perfIdx] == cellIdx) {
|
|
for (int i = 0; i < RateVector::dimension; ++i) {
|
|
rates[i] += connectionRates_[perfIdx][i];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::volumetricSurfaceRateForConnection(int cellIdx, int phaseIdx) const
|
|
{
|
|
for (int perfIdx = 0; perfIdx < this->number_of_perforations_; ++perfIdx) {
|
|
if (this->cells()[perfIdx] == cellIdx) {
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
return connectionRates_[perfIdx][activeCompIdx].value();
|
|
}
|
|
}
|
|
// this is not thread safe
|
|
OPM_THROW(std::invalid_argument, "The well with name " + this->name()
|
|
+ " does not perforate cell " + std::to_string(cellIdx));
|
|
return 0.0;
|
|
}
|
|
|
|
|
|
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
checkWellOperability(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
|
|
if (!param_.check_well_operability_) {
|
|
return;
|
|
}
|
|
|
|
if (this->wellIsStopped() && !changed_to_stopped_this_step_) {
|
|
return;
|
|
}
|
|
|
|
updateWellOperability(simulator, well_state, deferred_logger);
|
|
if (!this->operability_status_.isOperableAndSolvable()) {
|
|
this->operability_status_.use_vfpexplicit = true;
|
|
deferred_logger.debug("EXPLICIT_LOOKUP_VFP",
|
|
"well not operable, trying with explicit vfp lookup: " + this->name());
|
|
updateWellOperability(simulator, well_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
gliftBeginTimeStepWellTestIterateWellEquations(const Simulator& simulator,
|
|
const double dt,
|
|
WellState<Scalar>& well_state,
|
|
const GroupState<Scalar>& group_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& well_name = this->name();
|
|
assert(this->wellHasTHPConstraints(simulator.vanguard().summaryState()));
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
auto report_step_idx = simulator.episodeIndex();
|
|
const auto& glo = schedule.glo(report_step_idx);
|
|
if(glo.active() && glo.has_well(well_name)) {
|
|
const auto increment = glo.gaslift_increment();
|
|
auto alq = well_state.getALQ(well_name);
|
|
bool converged;
|
|
while (alq > 0) {
|
|
well_state.setALQ(well_name, alq);
|
|
if ((converged =
|
|
iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger)))
|
|
{
|
|
return converged;
|
|
}
|
|
alq -= increment;
|
|
}
|
|
return false;
|
|
}
|
|
else {
|
|
return iterateWellEquations(simulator, dt, well_state, group_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
gliftBeginTimeStepWellTestUpdateALQ(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
const auto& well_name = this->name();
|
|
if (!this->wellHasTHPConstraints(summary_state)) {
|
|
const std::string msg = fmt::format("GLIFT WTEST: Well {} does not have THP constraints", well_name);
|
|
deferred_logger.info(msg);
|
|
return;
|
|
}
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
const auto report_step_idx = simulator.episodeIndex();
|
|
const auto& glo = schedule.glo(report_step_idx);
|
|
if (!glo.has_well(well_name)) {
|
|
const std::string msg = fmt::format(
|
|
"GLIFT WTEST: Well {} : Gas Lift not activated: "
|
|
"WLIFTOPT is probably missing. Skipping.", well_name);
|
|
deferred_logger.info(msg);
|
|
return;
|
|
}
|
|
const auto& gl_well = glo.well(well_name);
|
|
auto& max_alq_optional = gl_well.max_rate();
|
|
Scalar max_alq;
|
|
if (max_alq_optional) {
|
|
max_alq = *max_alq_optional;
|
|
}
|
|
else {
|
|
const auto& well_ecl = this->wellEcl();
|
|
const auto& controls = well_ecl.productionControls(summary_state);
|
|
const auto& table = this->vfpProperties()->getProd()->getTable(controls.vfp_table_number);
|
|
const auto& alq_values = table.getALQAxis();
|
|
max_alq = alq_values.back();
|
|
}
|
|
well_state.setALQ(well_name, max_alq);
|
|
const std::string msg = fmt::format(
|
|
"GLIFT WTEST: Well {} : Setting ALQ to max value: {}",
|
|
well_name, max_alq);
|
|
deferred_logger.info(msg);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellOperability(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
if (this->param_.local_well_solver_control_switching_) {
|
|
const bool success = updateWellOperabilityFromWellEq(simulator, well_state, deferred_logger);
|
|
if (success) {
|
|
return;
|
|
} else {
|
|
deferred_logger.debug("Operability check using well equations did not converge for well "
|
|
+ this->name() + ", reverting to classical approach." );
|
|
}
|
|
}
|
|
this->operability_status_.resetOperability();
|
|
|
|
bool thp_controlled = this->isInjector() ? well_state.well(this->index_of_well_).injection_cmode == Well::InjectorCMode::THP:
|
|
well_state.well(this->index_of_well_).production_cmode == Well::ProducerCMode::THP;
|
|
bool bhp_controlled = this->isInjector() ? well_state.well(this->index_of_well_).injection_cmode == Well::InjectorCMode::BHP:
|
|
well_state.well(this->index_of_well_).production_cmode == Well::ProducerCMode::BHP;
|
|
|
|
// Operability checking is not free
|
|
// Only check wells under BHP and THP control
|
|
bool check_thp = thp_controlled || this->operability_status_.thp_limit_violated_but_not_switched;
|
|
if (check_thp || bhp_controlled) {
|
|
updateIPR(simulator, deferred_logger);
|
|
checkOperabilityUnderBHPLimit(well_state, simulator, deferred_logger);
|
|
}
|
|
// we do some extra checking for wells under THP control.
|
|
if (check_thp) {
|
|
checkOperabilityUnderTHPLimit(simulator, well_state, deferred_logger);
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
updateWellOperabilityFromWellEq(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger)
|
|
{
|
|
// only makes sense if we're using this parameter is true
|
|
assert(this->param_.local_well_solver_control_switching_);
|
|
this->operability_status_.resetOperability();
|
|
WellState<Scalar> well_state_copy = well_state;
|
|
const auto& group_state = simulator.problem().wellModel().groupState();
|
|
const double dt = simulator.timeStepSize();
|
|
// equations should be converged at this stage, so only one it is needed
|
|
bool converged = iterateWellEquations(simulator, dt, well_state_copy, group_state, deferred_logger);
|
|
return converged;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellStateWithTarget(const Simulator& simulator,
|
|
const GroupState<Scalar>& group_state,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
|
|
// only bhp and wellRates are used to initilize the primaryvariables for standard wells
|
|
const auto& well = this->well_ecl_;
|
|
const int well_index = this->index_of_well_;
|
|
auto& ws = well_state.well(well_index);
|
|
const auto& pu = this->phaseUsage();
|
|
const int np = well_state.numPhases();
|
|
const auto& summaryState = simulator.vanguard().summaryState();
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
|
|
if (this->wellIsStopped()) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = 0;
|
|
}
|
|
ws.thp = 0;
|
|
return;
|
|
}
|
|
|
|
if (this->isInjector() )
|
|
{
|
|
const auto& controls = well.injectionControls(summaryState);
|
|
|
|
InjectorType injectorType = controls.injector_type;
|
|
int phasePos;
|
|
switch (injectorType) {
|
|
case InjectorType::WATER:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Aqua];
|
|
break;
|
|
}
|
|
case InjectorType::OIL:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Liquid];
|
|
break;
|
|
}
|
|
case InjectorType::GAS:
|
|
{
|
|
phasePos = pu.phase_pos[BlackoilPhases::Vapour];
|
|
break;
|
|
}
|
|
default:
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Expected WATER, OIL or GAS as type for injectors " + this->name(), deferred_logger );
|
|
}
|
|
|
|
const auto current = ws.injection_cmode;
|
|
|
|
switch (current) {
|
|
case Well::InjectorCMode::RATE:
|
|
{
|
|
ws.surface_rates[phasePos] = (1.0 - this->rsRvInj()) * controls.surface_rate;
|
|
if(this->rsRvInj() > 0) {
|
|
if (injectorType == InjectorType::OIL && FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
ws.surface_rates[pu.phase_pos[BlackoilPhases::Vapour]] = controls.surface_rate * this->rsRvInj();
|
|
} else if (injectorType == InjectorType::GAS && FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
ws.surface_rates[pu.phase_pos[BlackoilPhases::Liquid]] = controls.surface_rate * this->rsRvInj();
|
|
} else {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Expected OIL or GAS as type for injectors when RS/RV (item 10) is non-zero " + this->name(), deferred_logger );
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::RESV:
|
|
{
|
|
std::vector<Scalar> convert_coeff(this->number_of_phases_, 1.0);
|
|
this->rateConverter_.calcCoeff(/*fipreg*/ 0, this->pvtRegionIdx_, convert_coeff);
|
|
const Scalar coeff = convert_coeff[phasePos];
|
|
ws.surface_rates[phasePos] = controls.reservoir_rate/coeff;
|
|
break;
|
|
}
|
|
|
|
case Well::InjectorCMode::THP:
|
|
{
|
|
auto rates = ws.surface_rates;
|
|
Scalar bhp = WellBhpThpCalculator(*this).calculateBhpFromThp(well_state,
|
|
rates,
|
|
well,
|
|
summaryState,
|
|
this->getRefDensity(),
|
|
deferred_logger);
|
|
ws.bhp = bhp;
|
|
ws.thp = this->getTHPConstraint(summaryState);
|
|
|
|
// if the total rates are negative or zero
|
|
// we try to provide a better intial well rate
|
|
// using the well potentials
|
|
Scalar total_rate = std::accumulate(rates.begin(), rates.end(), 0.0);
|
|
if (total_rate <= 0.0)
|
|
ws.surface_rates = ws.well_potentials;
|
|
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::BHP:
|
|
{
|
|
ws.bhp = controls.bhp_limit;
|
|
Scalar total_rate = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_rate += ws.surface_rates[p];
|
|
}
|
|
// if the total rates are negative or zero
|
|
// we try to provide a better intial well rate
|
|
// using the well potentials
|
|
if (total_rate <= 0.0)
|
|
ws.surface_rates = ws.well_potentials;
|
|
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::GRUP:
|
|
{
|
|
assert(well.isAvailableForGroupControl());
|
|
const auto& group = schedule.getGroup(well.groupName(), this->currentStep());
|
|
const Scalar efficiencyFactor = well.getEfficiencyFactor();
|
|
std::optional<Scalar> target =
|
|
this->getGroupInjectionTargetRate(group,
|
|
well_state,
|
|
group_state,
|
|
schedule,
|
|
summaryState,
|
|
injectorType,
|
|
efficiencyFactor,
|
|
deferred_logger);
|
|
if (target)
|
|
ws.surface_rates[phasePos] = *target;
|
|
break;
|
|
}
|
|
case Well::InjectorCMode::CMODE_UNDEFINED:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + this->name(), deferred_logger );
|
|
}
|
|
|
|
}
|
|
// for wells with zero injection rate, if we assign exactly zero rate,
|
|
// we will have to assume some trivial composition in the wellbore.
|
|
// here, we use some small value (about 0.01 m^3/day ~= 1.e-7) to initialize
|
|
// the zero rate target, then we can use to retain the composition information
|
|
// within the wellbore from the previous result, and hopefully it is a good
|
|
// initial guess for the zero rate target.
|
|
ws.surface_rates[phasePos] = std::max(Scalar{1.e-7}, ws.surface_rates[phasePos]);
|
|
|
|
if (ws.bhp == 0.) {
|
|
ws.bhp = controls.bhp_limit;
|
|
}
|
|
}
|
|
//Producer
|
|
else
|
|
{
|
|
const auto current = ws.production_cmode;
|
|
const auto& controls = well.productionControls(summaryState);
|
|
switch (current) {
|
|
case Well::ProducerCMode::ORAT:
|
|
{
|
|
Scalar current_rate = -ws.surface_rates[ pu.phase_pos[Oil] ];
|
|
// for trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (current_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= controls.oil_rate/current_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar> fractions = initialWellRateFractions(simulator, well_state);
|
|
double control_fraction = fractions[pu.phase_pos[Oil]];
|
|
if (control_fraction != 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * controls.oil_rate/control_fraction;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::WRAT:
|
|
{
|
|
Scalar current_rate = -ws.surface_rates[ pu.phase_pos[Water] ];
|
|
// for trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (current_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= controls.water_rate/current_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar> fractions = initialWellRateFractions(simulator, well_state);
|
|
const Scalar control_fraction = fractions[pu.phase_pos[Water]];
|
|
if (control_fraction != 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * controls.water_rate / control_fraction;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRAT:
|
|
{
|
|
Scalar current_rate = -ws.surface_rates[pu.phase_pos[Gas] ];
|
|
// or trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (current_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= controls.gas_rate/current_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar > fractions = initialWellRateFractions(simulator, well_state);
|
|
const Scalar control_fraction = fractions[pu.phase_pos[Gas]];
|
|
if (control_fraction != 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * controls.gas_rate / control_fraction;
|
|
}
|
|
}
|
|
}
|
|
|
|
break;
|
|
|
|
}
|
|
case Well::ProducerCMode::LRAT:
|
|
{
|
|
Scalar current_rate = - ws.surface_rates[ pu.phase_pos[Water] ]
|
|
- ws.surface_rates[ pu.phase_pos[Oil] ];
|
|
// or trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (current_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= controls.liquid_rate/current_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar> fractions = initialWellRateFractions(simulator, well_state);
|
|
const Scalar control_fraction = fractions[pu.phase_pos[Water]] + fractions[pu.phase_pos[Oil]];
|
|
if (control_fraction != 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * controls.liquid_rate / control_fraction;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CRAT:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error,
|
|
fmt::format("CRAT control not supported, well {}", this->name()),
|
|
deferred_logger);
|
|
}
|
|
case Well::ProducerCMode::RESV:
|
|
{
|
|
std::vector<Scalar> convert_coeff(this->number_of_phases_, 1.0);
|
|
this->rateConverter_.calcCoeff(/*fipreg*/ 0, this->pvtRegionIdx_, ws.surface_rates, convert_coeff);
|
|
Scalar total_res_rate = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_res_rate -= ws.surface_rates[p] * convert_coeff[p];
|
|
}
|
|
if (controls.prediction_mode) {
|
|
// or trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (total_res_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= controls.resv_rate/total_res_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar> fractions = initialWellRateFractions(simulator, well_state);
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * controls.resv_rate / convert_coeff[p];
|
|
}
|
|
}
|
|
} else {
|
|
std::vector<Scalar> hrates(this->number_of_phases_,0.);
|
|
if (FluidSystem::phaseIsActive(FluidSystem::waterPhaseIdx)) {
|
|
hrates[pu.phase_pos[Water]] = controls.water_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx)) {
|
|
hrates[pu.phase_pos[Oil]] = controls.oil_rate;
|
|
}
|
|
if (FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx)) {
|
|
hrates[pu.phase_pos[Gas]] = controls.gas_rate;
|
|
}
|
|
std::vector<Scalar> hrates_resv(this->number_of_phases_,0.);
|
|
this->rateConverter_.calcReservoirVoidageRates(/*fipreg*/ 0, this->pvtRegionIdx_, hrates, hrates_resv);
|
|
Scalar target = std::accumulate(hrates_resv.begin(), hrates_resv.end(), 0.0);
|
|
// or trivial rates or opposite direction we don't just scale the rates
|
|
// but use either the potentials or the mobility ratio to initial the well rates
|
|
if (total_res_rate > 0.0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= target/total_res_rate;
|
|
}
|
|
} else {
|
|
const std::vector<Scalar> fractions = initialWellRateFractions(simulator, well_state);
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = - fractions[p] * target / convert_coeff[p];
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::BHP:
|
|
{
|
|
ws.bhp = controls.bhp_limit;
|
|
Scalar total_rate = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_rate -= ws.surface_rates[p];
|
|
}
|
|
// if the total rates are negative or zero
|
|
// we try to provide a better intial well rate
|
|
// using the well potentials
|
|
if (total_rate <= 0.0){
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] = -ws.well_potentials[p];
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::THP:
|
|
{
|
|
const bool update_success = updateWellStateWithTHPTargetProd(simulator, well_state, deferred_logger);
|
|
|
|
if (!update_success) {
|
|
// the following is the original way of initializing well state with THP constraint
|
|
// keeping it for robust reason in case that it fails to get a bhp value with THP constraint
|
|
// more sophisticated design might be needed in the future
|
|
auto rates = ws.surface_rates;
|
|
this->adaptRatesForVFP(rates);
|
|
const Scalar bhp = WellBhpThpCalculator(*this).calculateBhpFromThp(
|
|
well_state, rates, well, summaryState, this->getRefDensity(), deferred_logger);
|
|
ws.bhp = bhp;
|
|
ws.thp = this->getTHPConstraint(summaryState);
|
|
// if the total rates are negative or zero
|
|
// we try to provide a better initial well rate
|
|
// using the well potentials
|
|
const Scalar total_rate = -std::accumulate(rates.begin(), rates.end(), 0.0);
|
|
if (total_rate <= 0.0) {
|
|
for (int p = 0; p < this->number_of_phases_; ++p) {
|
|
ws.surface_rates[p] = -ws.well_potentials[p];
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::GRUP:
|
|
{
|
|
assert(well.isAvailableForGroupControl());
|
|
const auto& group = schedule.getGroup(well.groupName(), this->currentStep());
|
|
const Scalar efficiencyFactor = well.getEfficiencyFactor();
|
|
Scalar scale = this->getGroupProductionTargetRate(group,
|
|
well_state,
|
|
group_state,
|
|
schedule,
|
|
summaryState,
|
|
efficiencyFactor,
|
|
deferred_logger);
|
|
|
|
// we don't want to scale with zero and get zero rates.
|
|
if (scale > 0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
ws.surface_rates[p] *= scale;
|
|
}
|
|
ws.trivial_target = false;
|
|
} else {
|
|
ws.trivial_target = true;
|
|
}
|
|
break;
|
|
}
|
|
case Well::ProducerCMode::CMODE_UNDEFINED:
|
|
case Well::ProducerCMode::NONE:
|
|
{
|
|
OPM_DEFLOG_THROW(std::runtime_error, "Well control must be specified for well " + this->name() , deferred_logger);
|
|
break;
|
|
}
|
|
} // end of switch
|
|
|
|
if (ws.bhp == 0.) {
|
|
ws.bhp = controls.bhp_limit;
|
|
}
|
|
}
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
wellUnderZeroRateTarget(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Check if well is under zero rate control, either directly or from group
|
|
const bool isGroupControlled = this->wellUnderGroupControl(well_state.well(this->index_of_well_));
|
|
if (!isGroupControlled) {
|
|
// well is not under group control, check "individual" version
|
|
const auto& summaryState = simulator.vanguard().summaryState();
|
|
return this->wellUnderZeroRateTargetIndividual(summaryState, well_state);
|
|
} else {
|
|
return this->wellUnderZeroGroupRateTarget(simulator, well_state, deferred_logger, isGroupControlled);
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::wellUnderZeroGroupRateTarget(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger,
|
|
const std::optional<bool> group_control) const
|
|
{
|
|
// Check if well is under zero rate target from group
|
|
const bool isGroupControlled = group_control.value_or(this->wellUnderGroupControl(well_state.well(this->index_of_well_)));
|
|
if (isGroupControlled) {
|
|
const auto& summaryState = simulator.vanguard().summaryState();
|
|
const auto& group_state = simulator.problem().wellModel().groupState();
|
|
const auto& schedule = simulator.vanguard().schedule();
|
|
return this->zeroGroupRateTarget(summaryState, schedule, well_state, group_state, deferred_logger);
|
|
}
|
|
return false;
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
stoppedOrZeroRateTarget(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Check if well is stopped or under zero rate control, either
|
|
// directly or from group.
|
|
return this->wellIsStopped()
|
|
|| this->wellUnderZeroRateTarget(simulator, well_state, deferred_logger);
|
|
}
|
|
|
|
template<typename TypeTag>
|
|
std::vector<typename WellInterface<TypeTag>::Scalar>
|
|
WellInterface<TypeTag>::
|
|
initialWellRateFractions(const Simulator& simulator,
|
|
const WellState<Scalar>& well_state) const
|
|
{
|
|
const int np = this->number_of_phases_;
|
|
std::vector<Scalar> scaling_factor(np);
|
|
const auto& ws = well_state.well(this->index_of_well_);
|
|
|
|
Scalar total_potentials = 0.0;
|
|
for (int p = 0; p<np; ++p) {
|
|
total_potentials += ws.well_potentials[p];
|
|
}
|
|
if (total_potentials > 0) {
|
|
for (int p = 0; p<np; ++p) {
|
|
scaling_factor[p] = ws.well_potentials[p] / total_potentials;
|
|
}
|
|
return scaling_factor;
|
|
}
|
|
// if we don't have any potentials we weight it using the mobilites
|
|
// We only need approximation so we don't bother with the vapporized oil and dissolved gas
|
|
Scalar total_tw = 0;
|
|
const int nperf = this->number_of_perforations_;
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
total_tw += this->well_index_[perf];
|
|
}
|
|
for (int perf = 0; perf < nperf; ++perf) {
|
|
const int cell_idx = this->well_cells_[perf];
|
|
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/0);
|
|
const auto& fs = intQuants.fluidState();
|
|
const Scalar well_tw_fraction = this->well_index_[perf] / total_tw;
|
|
Scalar total_mobility = 0.0;
|
|
for (int p = 0; p < np; ++p) {
|
|
int modelPhaseIdx = this->flowPhaseToModelPhaseIdx(p);
|
|
total_mobility += fs.invB(modelPhaseIdx).value() * intQuants.mobility(modelPhaseIdx).value();
|
|
}
|
|
for (int p = 0; p < np; ++p) {
|
|
int modelPhaseIdx = this->flowPhaseToModelPhaseIdx(p);
|
|
scaling_factor[p] += well_tw_fraction * fs.invB(modelPhaseIdx).value() * intQuants.mobility(modelPhaseIdx).value() / total_mobility;
|
|
}
|
|
}
|
|
return scaling_factor;
|
|
}
|
|
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateWellStateRates(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Check if the rates of this well only are single-phase, do nothing
|
|
// if more than one nonzero rate.
|
|
auto& ws = well_state.well(this->index_of_well_);
|
|
int nonzero_rate_index = -1;
|
|
const Scalar floating_point_error_epsilon = 1e-14;
|
|
for (int p = 0; p < this->number_of_phases_; ++p) {
|
|
if (std::abs(ws.surface_rates[p]) > floating_point_error_epsilon) {
|
|
if (nonzero_rate_index == -1) {
|
|
nonzero_rate_index = p;
|
|
} else {
|
|
// More than one nonzero rate.
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Calculate the rates that follow from the current primary variables.
|
|
std::vector<Scalar> well_q_s = computeCurrentWellRates(simulator, deferred_logger);
|
|
|
|
if (nonzero_rate_index == -1) {
|
|
// No nonzero rates.
|
|
// Use the computed rate directly
|
|
for (int p = 0; p < this->number_of_phases_; ++p) {
|
|
ws.surface_rates[p] = well_q_s[this->flowPhaseToModelCompIdx(p)];
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Set the currently-zero phase flows to be nonzero in proportion to well_q_s.
|
|
const Scalar initial_nonzero_rate = ws.surface_rates[nonzero_rate_index];
|
|
const int comp_idx_nz = this->flowPhaseToModelCompIdx(nonzero_rate_index);
|
|
if (std::abs(well_q_s[comp_idx_nz]) > floating_point_error_epsilon) {
|
|
for (int p = 0; p < this->number_of_phases_; ++p) {
|
|
if (p != nonzero_rate_index) {
|
|
const int comp_idx = this->flowPhaseToModelCompIdx(p);
|
|
Scalar& rate = ws.surface_rates[p];
|
|
rate = (initial_nonzero_rate / well_q_s[comp_idx_nz]) * (well_q_s[comp_idx]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
std::vector<typename WellInterface<TypeTag>::Scalar>
|
|
WellInterface<TypeTag>::
|
|
wellIndex(const int perf,
|
|
const IntensiveQuantities& intQuants,
|
|
const Scalar trans_mult,
|
|
const SingleWellState<Scalar>& ws) const
|
|
{
|
|
// Add a Forchheimer term to the gas phase CTF if the run uses
|
|
// either of the WDFAC or the WDFACCOR keywords.
|
|
|
|
auto wi = std::vector<Scalar>
|
|
(this->num_components_, this->well_index_[perf] * trans_mult);
|
|
|
|
if constexpr (! Indices::gasEnabled) {
|
|
return wi;
|
|
}
|
|
|
|
const auto& wdfac = this->well_ecl_.getWDFAC();
|
|
|
|
if (! wdfac.useDFactor() || (this->well_index_[perf] == 0.0)) {
|
|
return wi;
|
|
}
|
|
|
|
const Scalar d = this->computeConnectionDFactor(perf, intQuants, ws);
|
|
if (d < 1.0e-15) {
|
|
return wi;
|
|
}
|
|
|
|
// Solve quadratic equations for connection rates satisfying the ipr and the flow-dependent skin.
|
|
// If more than one solution, pick the one corresponding to lowest absolute rate (smallest skin).
|
|
const auto& connection = this->well_ecl_.getConnections()[ws.perf_data.ecl_index[perf]];
|
|
const Scalar Kh = connection.Kh();
|
|
const Scalar scaling = 3.141592653589 * Kh * connection.wpimult();
|
|
const unsigned gas_comp_idx = Indices::canonicalToActiveComponentIndex(FluidSystem::gasCompIdx);
|
|
|
|
const Scalar connection_pressure = ws.perf_data.pressure[perf];
|
|
const Scalar cell_pressure = getValue(intQuants.fluidState().pressure(FluidSystem::gasPhaseIdx));
|
|
const Scalar drawdown = cell_pressure - connection_pressure;
|
|
const Scalar invB = getValue(intQuants.fluidState().invB(FluidSystem::gasPhaseIdx));
|
|
const Scalar mob_g = getValue(intQuants.mobility(FluidSystem::gasPhaseIdx)) * invB;
|
|
const Scalar a = d;
|
|
const Scalar b = 2*scaling/wi[gas_comp_idx];
|
|
const Scalar c = -2*scaling*mob_g*drawdown;
|
|
|
|
Scalar consistent_Q = -1.0e20;
|
|
// Find and check negative solutions (a --> -a)
|
|
const Scalar r2n = b*b + 4*a*c;
|
|
if (r2n >= 0) {
|
|
const Scalar rn = std::sqrt(r2n);
|
|
const Scalar xn1 = (b-rn)*0.5/a;
|
|
if (xn1 <= 0) {
|
|
consistent_Q = xn1;
|
|
}
|
|
const Scalar xn2 = (b+rn)*0.5/a;
|
|
if (xn2 <= 0 && xn2 > consistent_Q) {
|
|
consistent_Q = xn2;
|
|
}
|
|
}
|
|
// Find and check positive solutions
|
|
consistent_Q *= -1;
|
|
const Scalar r2p = b*b - 4*a*c;
|
|
if (r2p >= 0) {
|
|
const Scalar rp = std::sqrt(r2p);
|
|
const Scalar xp1 = (rp-b)*0.5/a;
|
|
if (xp1 > 0 && xp1 < consistent_Q) {
|
|
consistent_Q = xp1;
|
|
}
|
|
const Scalar xp2 = -(rp+b)*0.5/a;
|
|
if (xp2 > 0 && xp2 < consistent_Q) {
|
|
consistent_Q = xp2;
|
|
}
|
|
}
|
|
wi[gas_comp_idx] = 1.0/(1.0/(trans_mult * this->well_index_[perf]) + (consistent_Q/2 * d / scaling));
|
|
|
|
return wi;
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateConnectionDFactor(const Simulator& simulator,
|
|
SingleWellState<Scalar>& ws) const
|
|
{
|
|
if (! this->well_ecl_.getWDFAC().useDFactor()) {
|
|
return;
|
|
}
|
|
|
|
auto& d_factor = ws.perf_data.connection_d_factor;
|
|
|
|
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
|
|
const int cell_idx = this->well_cells_[perf];
|
|
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/ 0);
|
|
|
|
d_factor[perf] = this->computeConnectionDFactor(perf, intQuants, ws);
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
typename WellInterface<TypeTag>::Scalar
|
|
WellInterface<TypeTag>::
|
|
computeConnectionDFactor(const int perf,
|
|
const IntensiveQuantities& intQuants,
|
|
const SingleWellState<Scalar>& ws) const
|
|
{
|
|
auto rhoGS = [regIdx = this->pvtRegionIdx()]() {
|
|
return FluidSystem::referenceDensity(FluidSystem::gasPhaseIdx, regIdx);
|
|
};
|
|
|
|
// Viscosity is evaluated at connection pressure.
|
|
auto gas_visc = [connection_pressure = ws.perf_data.pressure[perf],
|
|
temperature = ws.temperature,
|
|
regIdx = this->pvtRegionIdx(), &intQuants]()
|
|
{
|
|
const auto rv = getValue(intQuants.fluidState().Rv());
|
|
|
|
const auto& gasPvt = FluidSystem::gasPvt();
|
|
|
|
// Note that rv here is from grid block with typically
|
|
// p_block > connection_pressure
|
|
// so we may very well have rv > rv_sat
|
|
const Scalar rv_sat = gasPvt.saturatedOilVaporizationFactor
|
|
(regIdx, temperature, connection_pressure);
|
|
|
|
if (! (rv < rv_sat)) {
|
|
return gasPvt.saturatedViscosity(regIdx, temperature,
|
|
connection_pressure);
|
|
}
|
|
|
|
return gasPvt.viscosity(regIdx, temperature, connection_pressure,
|
|
rv, getValue(intQuants.fluidState().Rvw()));
|
|
};
|
|
|
|
const auto& connection = this->well_ecl_.getConnections()
|
|
[ws.perf_data.ecl_index[perf]];
|
|
|
|
return this->well_ecl_.getWDFAC().getDFactor(rhoGS, gas_visc, connection);
|
|
}
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
updateConnectionTransmissibilityFactor(const Simulator& simulator,
|
|
SingleWellState<Scalar>& ws) const
|
|
{
|
|
auto connCF = [&connIx = std::as_const(ws.perf_data.ecl_index),
|
|
&conns = this->well_ecl_.getConnections()]
|
|
(const int perf)
|
|
{
|
|
return conns[connIx[perf]].CF();
|
|
};
|
|
|
|
auto& tmult = ws.perf_data.connection_compaction_tmult;
|
|
auto& ctf = ws.perf_data.connection_transmissibility_factor;
|
|
|
|
for (int perf = 0; perf < this->number_of_perforations_; ++perf) {
|
|
const int cell_idx = this->well_cells_[perf];
|
|
|
|
const auto& intQuants = simulator.model()
|
|
.intensiveQuantities(cell_idx, /*timeIdx=*/ 0);
|
|
|
|
tmult[perf] = simulator.problem()
|
|
.template wellTransMultiplier<double>(intQuants, cell_idx);
|
|
|
|
ctf[perf] = connCF(perf) * tmult[perf];
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
typename WellInterface<TypeTag>::Eval
|
|
WellInterface<TypeTag>::getPerfCellPressure(const typename WellInterface<TypeTag>::FluidState& fs) const
|
|
{
|
|
if constexpr (Indices::oilEnabled) {
|
|
return fs.pressure(FluidSystem::oilPhaseIdx);
|
|
} else if constexpr (Indices::gasEnabled) {
|
|
return fs.pressure(FluidSystem::gasPhaseIdx);
|
|
} else {
|
|
return fs.pressure(FluidSystem::waterPhaseIdx);
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
template<class Value, class Callback>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
getMobility(const Simulator& simulator,
|
|
const int perf,
|
|
std::vector<Value>& mob,
|
|
Callback& extendEval,
|
|
[[maybe_unused]] DeferredLogger& deferred_logger) const
|
|
{
|
|
auto relpermArray = []()
|
|
{
|
|
if constexpr (std::is_same_v<Value, Scalar>) {
|
|
return std::array<Scalar,3>{};
|
|
} else {
|
|
return std::array<Eval,3>{};
|
|
}
|
|
};
|
|
const int cell_idx = this->well_cells_[perf];
|
|
assert (int(mob.size()) == this->num_components_);
|
|
const auto& intQuants = simulator.model().intensiveQuantities(cell_idx, /*timeIdx=*/0);
|
|
const auto& materialLawManager = simulator.problem().materialLawManager();
|
|
|
|
// either use mobility of the perforation cell or calculate its own
|
|
// based on passing the saturation table index
|
|
const int satid = this->saturation_table_number_[perf] - 1;
|
|
const int satid_elem = materialLawManager->satnumRegionIdx(cell_idx);
|
|
if (satid == satid_elem) { // the same saturation number is used. i.e. just use the mobilty from the cell
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(intQuants.mobility(phaseIdx));
|
|
}
|
|
if constexpr (has_solvent) {
|
|
mob[Indices::contiSolventEqIdx] = extendEval(intQuants.solventMobility());
|
|
}
|
|
} else {
|
|
const auto& paramsCell = materialLawManager->connectionMaterialLawParams(satid, cell_idx);
|
|
auto relativePerms = relpermArray();
|
|
MaterialLaw::relativePermeabilities(relativePerms, paramsCell, intQuants.fluidState());
|
|
|
|
// reset the satnumvalue back to original
|
|
materialLawManager->connectionMaterialLawParams(satid_elem, cell_idx);
|
|
|
|
// compute the mobility
|
|
for (unsigned phaseIdx = 0; phaseIdx < FluidSystem::numPhases; ++phaseIdx) {
|
|
if (!FluidSystem::phaseIsActive(phaseIdx)) {
|
|
continue;
|
|
}
|
|
|
|
const unsigned activeCompIdx = Indices::canonicalToActiveComponentIndex(FluidSystem::solventComponentIndex(phaseIdx));
|
|
mob[activeCompIdx] = extendEval(relativePerms[phaseIdx] / intQuants.fluidState().viscosity(phaseIdx));
|
|
}
|
|
|
|
// this may not work if viscosity and relperms has been modified?
|
|
if constexpr (has_solvent) {
|
|
OPM_DEFLOG_THROW(std::runtime_error, "individual mobility for wells does not work in combination with solvent", deferred_logger);
|
|
}
|
|
}
|
|
|
|
if (this->isInjector() && !this->inj_fc_multiplier_.empty()) {
|
|
const auto perf_ecl_index = this->perforationData()[perf].ecl_index;
|
|
const auto& connections = this->well_ecl_.getConnections();
|
|
const auto& connection = connections[perf_ecl_index];
|
|
if (connection.filterCakeActive()) {
|
|
for (auto& val : mob) {
|
|
val *= this->inj_fc_multiplier_[perf];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template<typename TypeTag>
|
|
bool
|
|
WellInterface<TypeTag>::
|
|
updateWellStateWithTHPTargetProd(const Simulator& simulator,
|
|
WellState<Scalar>& well_state,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
const auto& summary_state = simulator.vanguard().summaryState();
|
|
|
|
auto bhp_at_thp_limit = computeBhpAtThpLimitProdWithAlq(
|
|
simulator, summary_state, this->getALQ(well_state), deferred_logger);
|
|
if (bhp_at_thp_limit) {
|
|
std::vector<Scalar> rates(this->number_of_phases_, 0.0);
|
|
if (thp_update_iterations) {
|
|
computeWellRatesWithBhpIterations(simulator, *bhp_at_thp_limit,
|
|
rates, deferred_logger);
|
|
} else {
|
|
computeWellRatesWithBhp(simulator, *bhp_at_thp_limit,
|
|
rates, deferred_logger);
|
|
}
|
|
auto& ws = well_state.well(this->name());
|
|
ws.surface_rates = rates;
|
|
ws.bhp = *bhp_at_thp_limit;
|
|
ws.thp = this->getTHPConstraint(summary_state);
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
computeConnLevelProdInd(const FluidState& fs,
|
|
const std::function<Scalar(const Scalar)>& connPICalc,
|
|
const std::vector<Scalar>& mobility,
|
|
Scalar* connPI) const
|
|
{
|
|
const auto& pu = this->phaseUsage();
|
|
const int np = this->number_of_phases_;
|
|
for (int p = 0; p < np; ++p) {
|
|
// Note: E100's notion of PI value phase mobility includes
|
|
// the reciprocal FVF.
|
|
const auto connMob =
|
|
mobility[this->flowPhaseToModelCompIdx(p)]
|
|
* fs.invB(this->flowPhaseToModelPhaseIdx(p)).value();
|
|
|
|
connPI[p] = connPICalc(connMob);
|
|
}
|
|
|
|
if (FluidSystem::phaseIsActive(FluidSystem::oilPhaseIdx) &&
|
|
FluidSystem::phaseIsActive(FluidSystem::gasPhaseIdx))
|
|
{
|
|
const auto io = pu.phase_pos[Oil];
|
|
const auto ig = pu.phase_pos[Gas];
|
|
|
|
const auto vapoil = connPI[ig] * fs.Rv().value();
|
|
const auto disgas = connPI[io] * fs.Rs().value();
|
|
|
|
connPI[io] += vapoil;
|
|
connPI[ig] += disgas;
|
|
}
|
|
}
|
|
|
|
|
|
template <typename TypeTag>
|
|
void
|
|
WellInterface<TypeTag>::
|
|
computeConnLevelInjInd(const FluidState& fs,
|
|
const Phase preferred_phase,
|
|
const std::function<Scalar(const Scalar)>& connIICalc,
|
|
const std::vector<Scalar>& mobility,
|
|
Scalar* connII,
|
|
DeferredLogger& deferred_logger) const
|
|
{
|
|
// Assumes single phase injection
|
|
const auto& pu = this->phaseUsage();
|
|
|
|
auto phase_pos = 0;
|
|
if (preferred_phase == Phase::GAS) {
|
|
phase_pos = pu.phase_pos[Gas];
|
|
}
|
|
else if (preferred_phase == Phase::OIL) {
|
|
phase_pos = pu.phase_pos[Oil];
|
|
}
|
|
else if (preferred_phase == Phase::WATER) {
|
|
phase_pos = pu.phase_pos[Water];
|
|
}
|
|
else {
|
|
OPM_DEFLOG_THROW(NotImplemented,
|
|
fmt::format("Unsupported Injector Type ({}) "
|
|
"for well {} during connection I.I. calculation",
|
|
static_cast<int>(preferred_phase), this->name()),
|
|
deferred_logger);
|
|
}
|
|
|
|
const auto mt = std::accumulate(mobility.begin(), mobility.end(), 0.0);
|
|
connII[phase_pos] = connIICalc(mt * fs.invB(this->flowPhaseToModelPhaseIdx(phase_pos)).value());
|
|
}
|
|
|
|
} // namespace Opm
|