opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp
2018-06-26 12:30:54 +02:00

802 lines
36 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
Copyright 2017 IRIS AS
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Well.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
// TODO: same definition with WellInterface, eventually they should go to a common header file.
static const int Water = BlackoilPhases::Aqua;
static const int Oil = BlackoilPhases::Liquid;
static const int Gas = BlackoilPhases::Vapour;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
void init(const Wells* wells, const std::vector<double>& cellPressures, const WellStateFullyImplicitBlackoil* prevState, const PhaseUsage& pu)
{
// call init on base class
BaseType :: init(wells, cellPressures);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
well_reservoir_rates_.resize(nw * np, 0.0);
well_dissolved_gas_rates_.resize(nw, 0.0);
well_vaporized_oil_rates_.resize(nw, 0.0);
is_new_well_.resize(nw, true);
if (prevState && !prevState->wellMap().empty()) {
const auto& end = prevState->wellMap().end();
for (int w = 0; w < nw; ++w) {
const auto& it = prevState->wellMap().find( wells->name[w]);
if (it != end) {
is_new_well_[w] = false;
}
}
}
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if(prevState && !prevState->wellMap().empty()) {
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState->wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState->wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState->bhp()[ oldIndex ];
// thp
thp()[ newIndex ] = prevState->thp()[ oldIndex ];
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState->wellRates()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int old_perf_phase_idx = oldPerf_idx_beg *np;
for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np;
perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx )
{
perfPhaseRates()[ perf_phase_idx ] = prevState->perfPhaseRates()[ old_perf_phase_idx ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState->perfPress()[ oldPerf_idx ];
}
}
// perfSolventRates
if (pu.has_solvent) {
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState->perfRateSolvent()[ oldPerf_idx ];
}
}
}
}
// If in the new step, there is no THP related target/limit anymore, its thp value should be
// set to zero.
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
break;
}
}
// not finding any thp related control/limits
if (ctrl_index == nwc) {
thp()[w] = 0.;
}
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
top_segment_index_.reserve(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_.push_back(w);
}
segpress_ = bhp();
segrates_ = wellRates();
}
}
void resize(const Wells* wells, size_t numCells, const PhaseUsage& pu)
{
std::vector<double> tmp(numCells, 0.0); // <- UGLY HACK to pass the size
init(wells, tmp, nullptr, pu);
}
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls.
///
/// this method is only for flow_legacy!
template <class PrevWellState>
void initLegacy(const Wells* wells, const std::vector<double>& cellPressures , const PrevWellState& prevState, const PhaseUsage& pu)
{
// call init on base class
BaseType :: init(wells, cellPressures);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
well_reservoir_rates_.resize(nw * np, 0.0);
well_dissolved_gas_rates_.resize(nw, 0.0);
well_vaporized_oil_rates_.resize(nw, 0.0);
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = cellPressures[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
is_new_well_.resize(nw, true);
perfRateSolvent_.clear();
perfRateSolvent_.resize(nperf, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
// this is not a new added well
is_new_well_[w] = false;
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// thp
thp()[ newIndex ] = prevState.thp()[ oldIndex ];
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// perfPhaseRates
const int oldPerf_idx_beg = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int old_perf_phase_idx = oldPerf_idx_beg *np;
for (int perf_phase_idx = wells->well_connpos[ newIndex ]*np;
perf_phase_idx < wells->well_connpos[ newIndex + 1]*np; ++perf_phase_idx, ++old_perf_phase_idx )
{
perfPhaseRates()[ perf_phase_idx ] = prevState.perfPhaseRates()[ old_perf_phase_idx ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
}
}
// perfSolventRates
if (pu.has_solvent) {
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf_idx = oldPerf_idx_beg;
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfRateSolvent()[ perf ] = prevState.perfRateSolvent()[ oldPerf_idx ];
}
}
}
}
// If in the new step, there is no THP related target/limit anymore, its thp value should be
// set to zero.
const WellControls* ctrl = wells->ctrls[w];
const int nwc = well_controls_get_num(ctrl);
int ctrl_index = 0;
for (; ctrl_index < nwc; ++ctrl_index) {
if (well_controls_iget_type(ctrl, ctrl_index) == THP) {
break;
}
}
// not finding any thp related control/limits
if (ctrl_index == nwc) {
thp()[w] = 0.;
}
}
}
{
// we need to create a trival segment related values to avoid there will be some
// multi-segment wells added later.
top_segment_index_.reserve(nw);
for (int w = 0; w < nw; ++w) {
top_segment_index_.push_back(w);
}
segpress_ = bhp();
segrates_ = wellRates();
}
}
// this method is only for flow_legacy!
template <class State, class PrevWellState>
void initLegacy(const Wells* wells, const State& state, const PrevWellState& prevState, const PhaseUsage& pu)
{
initLegacy(wells, state.pressure(), prevState, pu);
}
// this method is only for flow_legacy!
template <class State>
void resizeLegacy(const Wells* wells, const State& state, const PhaseUsage& pu)
{
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
initLegacy(wells, state, dummy_state, pu) ;
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per well.
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
data::Wells report(const PhaseUsage &pu, const int* globalCellIdxMap) const override
{
data::Wells res = WellState::report(pu, globalCellIdxMap);
const int nw = this->numWells();
if( nw == 0 ) return res;
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector< rt > phs( np );
if( pu.phase_used[Water] ) {
phs.at( pu.phase_pos[Water] ) = rt::wat;
}
if( pu.phase_used[Oil] ) {
phs.at( pu.phase_pos[Oil] ) = rt::oil;
}
if( pu.phase_used[Gas] ) {
phs.at( pu.phase_pos[Gas] ) = rt::gas;
}
if (pu.has_solvent) {
// add solvent component
for( int w = 0; w < nw; ++w ) {
res.at( wells_->name[ w ]).rates.set( rt::solvent, solventWellRate(w) );
}
}
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( const auto& wt : this->wellMap() ) {
const auto w = wt.second[ 0 ];
auto& well = res.at( wt.first );
well.control = this->currentControls()[ w ];
const int well_rate_index = w * pu.num_phases;
if ( pu.phase_used[Water] ) {
well.rates.set( rt::reservoir_water, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Water]] );
}
if ( pu.phase_used[Oil] ) {
well.rates.set( rt::reservoir_oil, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Oil]] );
}
if ( pu.phase_used[Gas] ) {
well.rates.set( rt::reservoir_gas, this->well_reservoir_rates_[well_rate_index + pu.phase_pos[Gas]] );
}
well.rates.set( rt::dissolved_gas, this->well_dissolved_gas_rates_[w] );
well.rates.set( rt::vaporized_oil, this->well_vaporized_oil_rates_[w] );
int local_comp_index = 0;
for( auto& comp : well.connections) {
const auto rates = this->perfPhaseRates().begin()
+ (np * wt.second[ 1 ])
+ (np * local_comp_index);
++local_comp_index;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
}
}
assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]);
}
return res;
}
/// init the MS well related.
template <typename PrevWellState>
void initWellStateMSWell(const Wells* wells, const std::vector<const Well*>& wells_ecl,
const int time_step, const PhaseUsage& pu, const PrevWellState& prev_well_state)
{
// still using the order in wells
const int nw = wells->number_of_wells;
if (nw == 0) {
return;
}
top_segment_index_.clear();
top_segment_index_.reserve(nw);
segpress_.clear();
segpress_.reserve(nw);
segrates_.clear();
segrates_.reserve(nw * numPhases());
nseg_ = 0;
// in the init function, the well rates and perforation rates have been initialized or copied from prevState
// what we do here, is to set the segment rates and perforation rates
for (int w = 0; w < nw; ++w) {
const int nw_wells_ecl = wells_ecl.size();
int index_well_ecl = 0;
const std::string well_name(wells->name[w]);
for (; index_well_ecl < nw_wells_ecl; ++index_well_ecl) {
if (well_name == wells_ecl[index_well_ecl]->name()) {
break;
}
}
// It should be able to find in wells_ecl.
if (index_well_ecl == nw_wells_ecl) {
OPM_THROW(std::logic_error, "Could not find well " << well_name << " in wells_ecl ");
}
const Well* well_ecl = wells_ecl[index_well_ecl];
top_segment_index_.push_back(nseg_);
if ( !well_ecl->isMultiSegment(time_step) ) { // not multi-segment well
nseg_ += 1;
segpress_.push_back(bhp()[w]);
const int np = numPhases();
for (int p = 0; p < np; ++p) {
segrates_.push_back(wellRates()[np * w + p]);
}
} else { // it is a multi-segment well
const WellSegments& segment_set = well_ecl->getWellSegments(time_step);
// assuming the order of the perforations in well_ecl is the same with Wells
const WellConnections& completion_set = well_ecl->getConnections(time_step);
// number of segment for this single well
const int well_nseg = segment_set.size();
const int nperf = completion_set.size();
nseg_ += well_nseg;
// we need to know for each segment, how many perforation it has and how many segments using it as outlet_segment
// that is why I think we should use a well model to initialize the WellState here
std::vector<std::vector<int>> segment_perforations(well_nseg);
for (int perf = 0; perf < nperf; ++perf) {
const Connection& connection = completion_set.get(perf);
const int segment_index = segment_set.segmentNumberToIndex(connection.segment_number);
segment_perforations[segment_index].push_back(perf);
}
std::vector<std::vector<int>> segment_inlets(well_nseg);
for (int seg = 0; seg < well_nseg; ++seg) {
const Segment& segment = segment_set[seg];
const int segment_number = segment.segmentNumber();
const int outlet_segment_number = segment.outletSegment();
if (outlet_segment_number > 0) {
const int segment_index = segment_set.segmentNumberToIndex(segment_number);
const int outlet_segment_index = segment_set.segmentNumberToIndex(outlet_segment_number);
segment_inlets[outlet_segment_index].push_back(segment_index);
}
}
// for the segrates_, now it becomes a recursive solution procedure.
{
const int np = numPhases();
const int start_perf = wells->well_connpos[w];
const int start_perf_next_well = wells->well_connpos[w + 1];
assert(nperf == (start_perf_next_well - start_perf)); // make sure the information from wells_ecl consistent with wells
if (pu.phase_used[Gas]) {
const int gaspos = pu.phase_pos[Gas];
// scale the phase rates for Gas to avoid too bad initial guess for gas fraction
// it will probably benefit the standard well too, while it needs to be justified
// TODO: to see if this strategy can benefit StandardWell too
// TODO: it might cause big problem for gas rate control or if there is a gas rate limit
// maybe the best way is to initialize the fractions first then get the rates
for (int perf = 0; perf < nperf; perf++) {
const int perf_pos = start_perf + perf;
perfPhaseRates()[np * perf_pos + gaspos] *= 100.;
}
}
const std::vector<double> perforation_rates(perfPhaseRates().begin() + np * start_perf,
perfPhaseRates().begin() + np * start_perf_next_well); // the perforation rates for this well
std::vector<double> segment_rates;
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, 0 /* top segment */, segment_rates);
std::copy(segment_rates.begin(), segment_rates.end(), std::back_inserter(segrates_));
}
// for the segment pressure, the segment pressure is the same with the first perforation belongs to the segment
// if there is no perforation associated with this segment, it uses the pressure from the outlet segment
// which requres the ordering is successful
// Not sure what is the best way to handle the initialization, hopefully, the bad initialization can be
// improved during the solveWellEq process
{
// top segment is always the first one, and its pressure is the well bhp
segpress_.push_back(bhp()[w]);
const int top_segment = top_segment_index_[w];
const int start_perf = wells->well_connpos[w];
for (int seg = 1; seg < well_nseg; ++seg) {
if ( !segment_perforations[seg].empty() ) {
const int first_perf = segment_perforations[seg][0];
segpress_.push_back(perfPress()[start_perf + first_perf]);
} else {
// segpress_.push_back(bhp); // may not be a good decision
// using the outlet segment pressure // it needs the ordering is correct
const int outlet_seg = segment_set[seg].outletSegment();
segpress_.push_back(segpress_[top_segment + segment_set.segmentNumberToIndex(outlet_seg)]);
}
}
}
}
}
assert(int(segpress_.size()) == nseg_);
assert(int(segrates_.size()) == nseg_ * numPhases() );
if (!prev_well_state.wellMap().empty()) {
// copying MS well related
const auto& end = prev_well_state.wellMap().end();
const int np = numPhases();
for (int w = 0; w < nw; ++w) {
const std::string name( wells->name[w] );
const auto& it = prev_well_state.wellMap().find( name );
if (it != end) { // the well is found in the prev_well_state
// TODO: the well with same name can change a lot, like they might not have same number of segments
// we need to handle that later.
// for now, we just copy them.
const int old_index_well = (*it).second[0];
const int new_index_well = w;
const int old_top_segment_index = prev_well_state.topSegmentIndex(old_index_well);
const int new_top_segmnet_index = topSegmentIndex(new_index_well);
int number_of_segment = 0;
// if it is the last well in list
if (new_index_well == int(top_segment_index_.size()) - 1) {
number_of_segment = nseg_ - new_top_segmnet_index;
} else {
number_of_segment = topSegmentIndex(new_index_well + 1) - new_top_segmnet_index;
}
for (int i = 0; i < number_of_segment * np; ++i) {
segrates_[new_top_segmnet_index * np + i] = prev_well_state.segRates()[old_top_segment_index * np + i];
}
for (int i = 0; i < number_of_segment; ++i) {
segpress_[new_top_segmnet_index + i] = prev_well_state.segPress()[old_top_segment_index + i];
}
}
}
}
}
static void calculateSegmentRates(const std::vector<std::vector<int>>& segment_inlets, const std::vector<std::vector<int>>&segment_perforations,
const std::vector<double>& perforation_rates, const int np, const int segment, std::vector<double>& segment_rates)
{
// the rate of the segment equals to the sum of the contribution from the perforations and inlet segment rates.
// the first segment is always the top segment, its rates should be equal to the well rates.
assert(segment_inlets.size() == segment_perforations.size());
const int well_nseg = segment_inlets.size();
if (segment == 0) { // beginning the calculation
segment_rates.resize(np * well_nseg, 0.0);
}
// contributions from the perforations belong to this segment
for (const int& perf : segment_perforations[segment]) {
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += perforation_rates[np * perf + p];
}
}
for (const int& inlet_seg : segment_inlets[segment]) {
calculateSegmentRates(segment_inlets, segment_perforations, perforation_rates, np, inlet_seg, segment_rates);
for (int p = 0; p < np; ++p) {
segment_rates[np * segment + p] += segment_rates[np * inlet_seg + p];
}
}
}
bool isNewWell(const int w) const {
return is_new_well_[w];
}
void setNewWell(const int w, const bool is_new_well) {
is_new_well_[w] = is_new_well;
}
/// One rate pr well connection.
std::vector<double>& perfRateSolvent() { return perfRateSolvent_; }
const std::vector<double>& perfRateSolvent() const { return perfRateSolvent_; }
/// One rate pr well
double solventWellRate(const int w) const {
double solvent_well_rate = 0.0;
for (int perf = wells_->well_connpos[w]; perf < wells_->well_connpos[w+1]; ++perf ) {
solvent_well_rate += perfRateSolvent_[perf];
}
return solvent_well_rate;
}
std::vector<double>& wellReservoirRates()
{
return well_reservoir_rates_;
}
std::vector<double>& wellDissolvedGasRates()
{
return well_dissolved_gas_rates_;
}
std::vector<double>& wellVaporizedOilRates()
{
return well_vaporized_oil_rates_;
}
const std::vector<double>& segRates() const
{
return segrates_;
}
std::vector<double>& segRates()
{
return segrates_;
}
const std::vector<double>& segPress() const
{
return segpress_;
}
std::vector<double>& segPress()
{
return segpress_;
}
int numSegment() const
{
return nseg_;
}
int topSegmentIndex(const int w) const
{
assert(w < int(top_segment_index_.size()) );
return top_segment_index_[w];
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> perfRateSolvent_;
// phase rates under reservoir condition for wells
// or voidage phase rates
std::vector<double> well_reservoir_rates_;
// dissolved gas rates or solution gas production rates
// should be zero for injection wells
std::vector<double> well_dissolved_gas_rates_;
// vaporized oil rates or solution oil producation rates
// should be zero for injection wells
std::vector<double> well_vaporized_oil_rates_;
// marking whether the well is just added
// for newly added well, the current initialized rates from WellState
// will have very wrong compositions for production wells, will mostly cause
// problem with VFP interpolation
std::vector<bool> is_new_well_;
// MS well related
// for StandardWell, the number of segments will be one
std::vector<double> segrates_;
std::vector<double> segpress_;
// the index of the top segments, which is used to locate the
// multisegment well related information in WellState
std::vector<int> top_segment_index_;
int nseg_; // total number of the segments
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED