opm-simulators/examples/problems/outflowproblem.hh
Andreas Lauser 290584dddc clean up the licensing preable of source files
the in-file lists of authors has been removed in favor of a global
list of authors in the LICENSE file. this is done because (a)
maintaining a list of authors at the beginning of a file is a major
pain in the a**, (b) the list of authors was not accurate in about 85%
of all cases where more than one person was involved and (c) this list
is not legally binding in any way (the copyright is at the person who
authored a given change, if these lists had any legal relevance, one
could "aquire" the copyright of the module by forking it and removing
the lists...)

the only exception of this is the eWoms fork of dune-istl's solvers.hh
file. This is beneficial because the authors of that file do not
appear in the global list. Further, carrying the fork of that file is
required because we would like to use a reasonable convergence
criterion for the linear solver. (the solvers from dune-istl do
neither support user-defined convergence criteria not do the
developers want support for it. (my patch was rejected a few years
ago.))
2016-03-17 13:20:20 +01:00

349 lines
10 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
* \copydoc Ewoms::OutflowProblem
*/
#ifndef EWOMS_OUTFLOW_PROBLEM_HH
#define EWOMS_OUTFLOW_PROBLEM_HH
#include <ewoms/models/pvs/pvsproperties.hh>
#include <opm/material/fluidstates/CompositionalFluidState.hpp>
#include <opm/material/fluidsystems/H2ON2LiquidPhaseFluidSystem.hpp>
#include <dune/grid/yaspgrid.hh>
#include <dune/grid/io/file/dgfparser/dgfyasp.hh>
#include <dune/common/version.hh>
#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>
namespace Ewoms {
template <class TypeTag>
class OutflowProblem;
}
namespace Ewoms {
namespace Properties {
NEW_TYPE_TAG(OutflowBaseProblem);
// Set the grid type
SET_TYPE_PROP(OutflowBaseProblem, Grid, Dune::YaspGrid<2>);
// Set the problem property
SET_TYPE_PROP(OutflowBaseProblem, Problem, Ewoms::OutflowProblem<TypeTag>);
// Set fluid system
SET_PROP(OutflowBaseProblem, FluidSystem)
{
private:
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
public:
// Two-component single phase fluid system
typedef Opm::FluidSystems::H2ON2LiquidPhase<Scalar> type;
};
// Disable gravity
SET_BOOL_PROP(OutflowBaseProblem, EnableGravity, false);
// Also write mass fractions to the output
SET_BOOL_PROP(OutflowBaseProblem, VtkWriteMassFractions, true);
// The default for the end time of the simulation
SET_SCALAR_PROP(OutflowBaseProblem, EndTime, 100);
// The default for the initial time step size of the simulation
SET_SCALAR_PROP(OutflowBaseProblem, InitialTimeStepSize, 1);
// The default DGF file to load
SET_STRING_PROP(OutflowBaseProblem, GridFile, "./data/outflow.dgf");
} // namespace Properties
} // namespace Ewoms
namespace Ewoms {
/*!
* \ingroup TestProblems
*
* \brief Problem where dissolved nitrogen is transported with the water
* phase from the left side to the right.
*
* The model domain is 1m times 1m and exhibits homogeneous soil
* properties (\f$ \mathrm{K=10e-10, \Phi=0.4}\f$). Initially the
* domain is fully saturated by water without any nitrogen dissolved.
*
* At the left side, a free-flow condition defines a nitrogen mole
* fraction of 0.02%. The water phase flows from the left side to the
* right due to the imposed pressure gradient of \f$1e5\,Pa/m\f$. The
* nitrogen is transported with the water flow and leaves the domain
* at the right boundary where an outflow boundary condition is
* used.
*/
template <class TypeTag>
class OutflowProblem : public GET_PROP_TYPE(TypeTag, BaseProblem)
{
typedef typename GET_PROP_TYPE(TypeTag, BaseProblem) ParentType;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, PrimaryVariables) PrimaryVariables;
typedef typename GET_PROP_TYPE(TypeTag, EqVector) EqVector;
typedef typename GET_PROP_TYPE(TypeTag, RateVector) RateVector;
typedef typename GET_PROP_TYPE(TypeTag, BoundaryRateVector) BoundaryRateVector;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) Simulator;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef typename GET_PROP_TYPE(TypeTag, MaterialLawParams) MaterialLawParams;
// copy some indices for convenience
enum {
// Grid and world dimension
dim = GridView::dimension,
dimWorld = GridView::dimensionworld,
// component indices
H2OIdx = FluidSystem::H2OIdx,
N2Idx = FluidSystem::N2Idx
};
typedef typename GridView::ctype CoordScalar;
typedef Dune::FieldVector<CoordScalar, dimWorld> GlobalPosition;
typedef Dune::FieldMatrix<Scalar, dimWorld, dimWorld> DimMatrix;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*/
OutflowProblem(Simulator &simulator)
: ParentType(simulator)
, eps_(1e-6)
{ }
/*!
* \copydoc FvBaseProblem::finishInit
*/
void finishInit()
{
ParentType::finishInit();
temperature_ = 273.15 + 20;
FluidSystem::init(/*minT=*/temperature_ - 1, /*maxT=*/temperature_ + 2,
/*numT=*/3,
/*minp=*/0.8e5, /*maxp=*/2.5e5, /*nump=*/500);
// set parameters of porous medium
perm_ = this->toDimMatrix_(1e-10);
porosity_ = 0.4;
tortuosity_ = 0.28;
}
/*!
* \name Problem parameters
*/
//! \{
/*!
* \copydoc FvBaseProblem::name
*/
std::string name() const
{ return "outflow"; }
/*!
* \copydoc FvBaseProblem::endTimeStep
*/
void endTimeStep()
{
#ifndef NDEBUG
this->model().checkConservativeness();
// Calculate storage terms
EqVector storage;
this->model().globalStorage(storage);
// Write mass balance information for rank 0
if (this->gridView().comm().rank() == 0) {
std::cout << "Storage: " << storage << std::endl << std::flush;
}
#endif // NDEBUG
}
/*!
* \copydoc FvBaseMultiPhaseProblem::temperature
*
* This problem assumes a temperature.
*/
template <class Context>
Scalar temperature(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return temperature_; } // in [K]
/*!
* \copydoc FvBaseMultiPhaseProblem::intrinsicPermeability
*
* This problem uses a constant intrinsic permeability.
*/
template <class Context>
const DimMatrix &intrinsicPermeability(const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ return perm_; }
/*!
* \copydoc FvBaseMultiPhaseProblem::porosity
*
* This problem uses a constant porosity.
*/
template <class Context>
Scalar porosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return porosity_; }
#if 0
/*!
* \brief Define the tortuosity \f$[?]\f$.
*
*/
template <class Context>
Scalar tortuosity(const Context &context, unsigned spaceIdx, unsigned timeIdx) const
{ return tortuosity_; }
/*!
* \brief Define the dispersivity \f$[?]\f$.
*
*/
template <class Context>
Scalar dispersivity(const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{ return 0; }
#endif
//! \}
/*!
* \name Boundary conditions
*/
//! \{
/*!
* \copydoc FvBaseProblem::boundary
*/
template <class Context>
void boundary(BoundaryRateVector &values, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
const GlobalPosition &globalPos = context.pos(spaceIdx, timeIdx);
if (onLeftBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
fs.setPressure(/*phaseIdx=*/0, fs.pressure(/*phaseIdx=*/0) + 1e5);
Scalar xlN2 = 2e-4;
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, xlN2);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1 - xlN2);
// impose an freeflow boundary condition
values.setFreeFlow(context, spaceIdx, timeIdx, fs);
}
else if (onRightBoundary_(globalPos)) {
Opm::CompositionalFluidState<Scalar, FluidSystem,
/*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
// impose an outflow boundary condition
values.setOutFlow(context, spaceIdx, timeIdx, fs);
}
else
// no flow on top and bottom
values.setNoFlow();
}
//! \}
/*!
* \name Volumetric terms
*/
//! \{
/*!
* \copydoc FvBaseProblem::initial
*/
template <class Context>
void initial(PrimaryVariables &values, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{
Opm::CompositionalFluidState<Scalar, FluidSystem, /*storeEnthalpy=*/false> fs;
initialFluidState_(fs, context, spaceIdx, timeIdx);
values.assignNaive(fs);
}
/*!
* \copydoc FvBaseProblem::source
*
* For this problem, the source term of all components is 0
* everywhere.
*/
template <class Context>
void source(RateVector &rate, const Context &context, unsigned spaceIdx,
unsigned timeIdx) const
{ rate = Scalar(0.0); }
//! \}
private:
bool onLeftBoundary_(const GlobalPosition &pos) const
{ return pos[0] < eps_; }
bool onRightBoundary_(const GlobalPosition &pos) const
{ return pos[0] > this->boundingBoxMax()[0] - eps_; }
template <class FluidState, class Context>
void initialFluidState_(FluidState &fs, const Context &context,
unsigned spaceIdx, unsigned timeIdx) const
{
Scalar T = temperature(context, spaceIdx, timeIdx);
// Scalar rho = FluidSystem::H2O::liquidDensity(T, /*pressure=*/1.5e5);
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
// Scalar z = context.pos(spaceIdx, timeIdx)[dim - 1] -
// this->boundingBoxMax()[dim - 1];
fs.setSaturation(/*phaseIdx=*/0, 1.0);
fs.setPressure(/*phaseIdx=*/0, 1e5 /* + rho*z */);
fs.setMoleFraction(/*phaseIdx=*/0, H2OIdx, 1.0);
fs.setMoleFraction(/*phaseIdx=*/0, N2Idx, 0);
fs.setTemperature(T);
}
const Scalar eps_;
MaterialLawParams materialParams_;
DimMatrix perm_;
Scalar temperature_;
Scalar porosity_;
Scalar tortuosity_;
};
} // namespace Ewoms
#endif