opm-simulators/opm/simulators/linalg/bda/BlockedMatrix.cpp
T.D. (Tongdong) Qiu f974a5f6db Added openclSolver
Usage: --gpu-mode=[cusparse|opencl|none] on command line
2020-06-22 18:26:49 +02:00

157 lines
4.6 KiB
C++

/*
Copyright 2019 Equinor ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cstdio>
#include <cstring>
#include <sys/time.h>
#include <cmath>
#include <iostream>
#include <opm/simulators/linalg/bda/BlockedMatrix.hpp>
using bda::BlockedMatrix;
namespace bda
{
BlockedMatrix *allocateBlockedMatrix(int Nb, int nnzbs) {
BlockedMatrix *mat = new BlockedMatrix();
mat->nnzValues = new Block[nnzbs];
mat->colIndices = new int[nnzbs];
mat->rowPointers = new int[Nb + 1];
mat->Nb = Nb;
mat->nnzbs = nnzbs;
return mat;
}
void freeBlockedMatrix(BlockedMatrix **mat) {
if (*mat) {
delete[] (*mat)->nnzValues;
delete[] (*mat)->colIndices;
delete[] (*mat)->rowPointers;
delete (*mat);
*mat = NULL;
}
}
BlockedMatrix *soft_copyBlockedMatrix(BlockedMatrix *mat) {
BlockedMatrix *res = new BlockedMatrix();
res->nnzValues = mat->nnzValues;
res->colIndices = mat->colIndices;
res->rowPointers = mat->rowPointers;
res->Nb = mat->Nb;
res->nnzbs = mat->nnzbs;
return res;
}
/*Sort a row of matrix elements from a blocked CSR-format.*/
void sortBlockedRow(int *colIndices, Block *data, int left, int right) {
int l = left;
int r = right;
int middle = colIndices[(l + r) >> 1];
double lDatum[BLOCK_SIZE * BLOCK_SIZE];
do {
while (colIndices[l] < middle)
l++;
while (colIndices[r] > middle)
r--;
if (l <= r) {
int lColIndex = colIndices[l];
colIndices[l] = colIndices[r];
colIndices[r] = lColIndex;
memcpy(lDatum, data + l, sizeof(double) * BLOCK_SIZE * BLOCK_SIZE);
memcpy(data + l, data + r, sizeof(double) * BLOCK_SIZE * BLOCK_SIZE);
memcpy(data + r, lDatum, sizeof(double) * BLOCK_SIZE * BLOCK_SIZE);
l++;
r--;
}
} while (l < r);
if (left < r)
sortBlockedRow(colIndices, data, left, r);
if (right > l)
sortBlockedRow(colIndices, data, l, right);
}
// LUMat->nnzValues[ik] = LUMat->nnzValues[ik] - (pivot * LUMat->nnzValues[jk]) in ilu decomposition
// a = a - (b * c)
void blockMultSub(Block a, Block b, Block c)
{
for (int row = 0; row < BLOCK_SIZE; row++) {
for (int col = 0; col < BLOCK_SIZE; col++) {
double temp = 0.0;
for (int k = 0; k < BLOCK_SIZE; k++) {
temp += b[BLOCK_SIZE * row + k] * c[BLOCK_SIZE * k + col];
}
a[BLOCK_SIZE * row + col] -= temp;
}
}
}
/*Perform a 3x3 matrix-matrix multiplicationj on two blocks*/
void blockMult(Block mat1, Block mat2, Block resMat) {
for (int row = 0; row < BLOCK_SIZE; row++) {
for (int col = 0; col < BLOCK_SIZE; col++) {
double temp = 0;
for (int k = 0; k < BLOCK_SIZE; k++) {
temp += mat1[BLOCK_SIZE * row + k] * mat2[BLOCK_SIZE * k + col];
}
resMat[BLOCK_SIZE * row + col] = temp;
}
}
}
/* Calculate the inverse of a block. This function is specific for only 3x3 block size.*/
void blockInvert3x3(Block mat, Block res) {
// code generated by maple, copied from DUNE
double t4 = mat[0] * mat[4];
double t6 = mat[0] * mat[5];
double t8 = mat[1] * mat[3];
double t10 = mat[2] * mat[3];
double t12 = mat[1] * mat[6];
double t14 = mat[2] * mat[6];
double det = (t4 * mat[8] - t6 * mat[7] - t8 * mat[8] +
t10 * mat[7] + t12 * mat[5] - t14 * mat[4]);
double t17 = 1.0 / det;
res[0] = (mat[4] * mat[8] - mat[5] * mat[7]) * t17;
res[1] = -(mat[1] * mat[8] - mat[2] * mat[7]) * t17;
res[2] = (mat[1] * mat[5] - mat[2] * mat[4]) * t17;
res[3] = -(mat[3] * mat[8] - mat[5] * mat[6]) * t17;
res[4] = (mat[0] * mat[8] - t14) * t17;
res[5] = -(t6 - t10) * t17;
res[6] = (mat[3] * mat[7] - mat[4] * mat[6]) * t17;
res[7] = -(mat[0] * mat[7] - t12) * t17;
res[8] = (t4 - t8) * t17;
}
} // end namespace bda