opm-simulators/tests/test_wellstatefullyimplicitblackoil.cpp
Bård Skaflestad b982ad0fd2 Record Dynamic Well Status in 'wellData()' Output
This commit sets the 'data::Well::dynamicStatus' based on the
dynamically updated 'Schedule' object (i.e., from ACTIONX and
similar) and the results of well/operability testing (WECON and/or
WTEST).  If a well is closed due to economic limits (WECON) we still
provide summary-style data at the timestep that closed the well, but
omit this data at later steps until the well reopens.

We add a new parameter to WellState::report() to distinguish these
situations.

This is in preparation of making the 'BlackoilWellModel' manage both
open and shut wells alike.
2021-03-18 17:28:28 +01:00

396 lines
13 KiB
C++

/*
Copyright 2018 Equinor ASA.
This file is part of the Open Porous Media Project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <config.h>
#define BOOST_TEST_MODULE WellStateFIBOTest
#include "MpiFixture.hpp"
#include <opm/simulators/wells/WellStateFullyImplicitBlackoil.hpp>
#include <opm/parser/eclipse/Python/Python.hpp>
#include <boost/test/unit_test.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/Schedule/Schedule.hpp>
#include <opm/parser/eclipse/Units/Units.hpp>
#include <opm/common/utility/TimeService.hpp>
#include <opm/grid/GridHelpers.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/core/props/phaseUsageFromDeck.hpp>
#include <opm/grid/GridManager.hpp>
#include <chrono>
#include <cstddef>
#include <string>
BOOST_GLOBAL_FIXTURE(MPIFixture);
struct Setup
{
Setup(const std::string& filename)
: Setup(Opm::Parser{}.parseFile(filename))
{}
Setup(const Opm::Deck& deck)
: es (deck)
, pu (Opm::phaseUsageFromDeck(es))
, grid (es.getInputGrid())
, python( std::make_shared<Opm::Python>() )
, sched(deck, es, python)
, st(Opm::TimeService::from_time_t(sched.getStartTime()))
{
initWellPerfData();
}
void initWellPerfData()
{
const auto& wells = sched.getWells(0);
const auto& cartDims = Opm::UgGridHelpers::cartDims(*grid.c_grid());
const int* compressed_to_cartesian = Opm::UgGridHelpers::globalCell(*grid.c_grid());
std::vector<int> cartesian_to_compressed(cartDims[0] * cartDims[1] * cartDims[2], -1);
for (int ii = 0; ii < Opm::UgGridHelpers::numCells(*grid.c_grid()); ++ii) {
cartesian_to_compressed[compressed_to_cartesian[ii]] = ii;
}
well_perf_data.resize(wells.size());
int well_index = 0;
for (const auto& well : wells) {
well_perf_data[well_index].clear();
well_perf_data[well_index].reserve(well.getConnections().size());
for (const auto& completion : well.getConnections()) {
if (completion.state() == Opm::Connection::State::OPEN) {
const int i = completion.getI();
const int j = completion.getJ();
const int k = completion.getK();
const int cart_grid_indx = i + cartDims[0] * (j + cartDims[1] * k);
const int active_index = cartesian_to_compressed[cart_grid_indx];
if (active_index < 0) {
const std::string msg
= ("Cell with i,j,k indices " + std::to_string(i) + " " + std::to_string(j) + " "
+ std::to_string(k) + " not found in grid (well = " + well.name() + ").");
OPM_THROW(std::runtime_error, msg);
} else {
Opm::PerforationData pd;
pd.cell_index = active_index;
pd.connection_transmissibility_factor = completion.CF();
pd.satnum_id = completion.satTableId();
well_perf_data[well_index].push_back(pd);
}
} else {
if (completion.state() != Opm::Connection::State::SHUT) {
OPM_THROW(std::runtime_error,
"Completion state: " << Opm::Connection::State2String(completion.state()) << " not handled");
}
}
}
++well_index;
}
}
Opm::EclipseState es;
Opm::PhaseUsage pu;
Opm::GridManager grid;
std::shared_ptr<Opm::Python> python;
Opm::Schedule sched;
Opm::SummaryState st;
std::vector<std::vector<Opm::PerforationData>> well_perf_data;
};
namespace {
Opm::WellStateFullyImplicitBlackoil
buildWellState(const Setup& setup, const std::size_t timeStep,
std::vector<Opm::ParallelWellInfo>& pinfos)
{
auto state = Opm::WellStateFullyImplicitBlackoil{};
const auto cpress =
std::vector<double>(setup.grid.c_grid()->number_of_cells,
100.0*Opm::unit::barsa);
auto wells = setup.sched.getWells(timeStep);
pinfos.resize(wells.size());
std::vector<Opm::ParallelWellInfo*> ppinfos(wells.size());
auto pw = pinfos.begin();
auto ppw = ppinfos.begin();
for (const auto& well : wells)
{
*pw = {well.name()};
*ppw = &(*pw);
pw->communicateFirstPerforation(true);
++pw;
++ppw;
}
state.init(cpress, setup.sched,
wells, ppinfos,
timeStep, nullptr, setup.pu, setup.well_perf_data, setup.st,
wells.size());
state.initWellStateMSWell(setup.sched.getWells(timeStep),
setup.pu, nullptr);
return state;
}
void setSegPress(const std::vector<Opm::Well>& wells,
Opm::WellStateFullyImplicitBlackoil& wstate)
{
const auto nWell = wells.size();
auto& segPress = wstate.segPress();
for (auto wellID = 0*nWell; wellID < nWell; ++wellID) {
const auto& well = wells[wellID];
const auto topSegIx = wstate.topSegmentIndex(wellID);
const auto pressTop = 100.0 * wellID;
auto* press = &segPress[topSegIx];
press[0] = pressTop;
if (! well.isMultiSegment()) {
continue;
}
const auto& segSet = well.getSegments();
const auto nSeg = segSet.size();
for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) {
// One-based numbering scheme for segments.
const auto segNo = segSet[segID].segmentNumber();
press[segNo - 1] = pressTop + 1.0*(segNo - 1);
}
}
}
void setSegRates(const std::vector<Opm::Well>& wells,
const Opm::PhaseUsage& pu,
Opm::WellStateFullyImplicitBlackoil& wstate)
{
const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua];
const auto iw = wat ? pu.phase_pos[Opm::BlackoilPhases::Aqua] : -1;
const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid];
const auto io = oil ? pu.phase_pos[Opm::BlackoilPhases::Liquid] : -1;
const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour];
const auto ig = gas ? pu.phase_pos[Opm::BlackoilPhases::Vapour] : -1;
const auto np = wstate.numPhases();
const auto nWell = wells.size();
auto& segRates = wstate.segRates();
for (auto wellID = 0*nWell; wellID < nWell; ++wellID) {
const auto& well = wells[wellID];
const auto topSegIx = wstate.topSegmentIndex(wellID);
const auto rateTop = 1000.0 * wellID;
if (wat) { segRates[np*topSegIx + iw] = rateTop; }
if (oil) { segRates[np*topSegIx + io] = rateTop; }
if (gas) { segRates[np*topSegIx + ig] = rateTop; }
if (! well.isMultiSegment()) {
continue;
}
const auto& segSet = well.getSegments();
const auto nSeg = segSet.size();
for (auto segID = 0*nSeg + 1; segID < nSeg; ++segID) {
// One-based numbering scheme for segments.
const auto segNo = segSet[segID].segmentNumber();
auto* rates = &segRates[(topSegIx + segNo - 1) * np];
if (wat) { rates[iw] = rateTop + 100.0*(segNo - 1); }
if (oil) { rates[io] = rateTop + 200.0*(segNo - 1); }
if (gas) { rates[ig] = rateTop + 400.0*(segNo - 1); }
}
}
}
} // Anonymous
BOOST_AUTO_TEST_SUITE(Segment)
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Linearisation)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector<Opm::ParallelWellInfo> pinfos;
const auto wstate = buildWellState(setup, tstep, pinfos);
BOOST_CHECK_EQUAL(wstate.numSegment(), 6 + 1);
const auto& wells = setup.sched.getWellsatEnd();
BOOST_CHECK_EQUAL(wells.size(), 2);
const auto prod01_first = wells[0].name() == "PROD01";
BOOST_CHECK_EQUAL(wstate.topSegmentIndex(0), 0);
BOOST_CHECK_EQUAL(wstate.topSegmentIndex(1),
prod01_first ? 6 : 1);
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Pressure)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector<Opm::ParallelWellInfo> pinfos;
auto wstate = buildWellState(setup, tstep, pinfos);
const auto& wells = setup.sched.getWells(tstep);
const auto prod01_first = wells[0].name() == "PROD01";
setSegPress(wells, wstate);
const auto rpt = wstate.report(setup.pu, setup.grid.c_grid()->global_cell, [](const int){return false;});
{
const auto& xw = rpt.at("INJE01");
BOOST_CHECK_EQUAL(xw.segments.size(), 1); // Top Segment
const auto& xseg = xw.segments.at(1);
BOOST_CHECK_EQUAL(xseg.segNumber, 1);
const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure;
BOOST_CHECK_CLOSE(xseg.pressures[pres_idx], prod01_first ? 100.0 : 0.0, 1.0e-10);
}
{
const auto expect_nSeg = 6;
const auto& xw = rpt.at("PROD01");
BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg);
const auto pressTop = prod01_first ? 0.0 : 100.0;
for (auto segID = 0; segID < expect_nSeg; ++segID) {
const auto& xseg = xw.segments.at(segID + 1);
BOOST_CHECK_EQUAL(xseg.segNumber, segID + 1);
const auto pres_idx = Opm::data::SegmentPressures::Value::Pressure;
BOOST_CHECK_CLOSE(xseg.pressures[pres_idx], pressTop + 1.0*segID, 1.0e-10);
}
}
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(Rates)
{
const Setup setup{ "msw.data" };
const auto tstep = std::size_t{0};
std::vector<Opm::ParallelWellInfo> pinfos;
auto wstate = buildWellState(setup, tstep, pinfos);
const auto wells = setup.sched.getWells(tstep);
const auto prod01_first = wells[0].name() == "PROD01";
const auto& pu = setup.pu;
setSegRates(wells, pu, wstate);
const auto rpt = wstate.report(pu, setup.grid.c_grid()->global_cell, [](const int){return false;});
const auto wat = pu.phase_used[Opm::BlackoilPhases::Aqua];
const auto oil = pu.phase_used[Opm::BlackoilPhases::Liquid];
const auto gas = pu.phase_used[Opm::BlackoilPhases::Vapour];
BOOST_CHECK(wat && oil && gas);
{
const auto rateTop = prod01_first ? 1000.0 : 0.0;
const auto& xw = rpt.at("INJE01");
BOOST_CHECK_EQUAL(xw.segments.size(), 1); // Top Segment
const auto& xseg = xw.segments.at(1);
BOOST_CHECK_EQUAL(xseg.segNumber, 1);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::wat),
rateTop, 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::oil),
rateTop, 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::gas),
rateTop, 1.0e-10);
}
{
const auto expect_nSeg = 6;
const auto& xw = rpt.at("PROD01");
BOOST_CHECK_EQUAL(xw.segments.size(), expect_nSeg);
const auto rateTop = prod01_first ? 0.0 : 1000.0;
for (auto segNum = 1; segNum <= expect_nSeg; ++segNum) {
const auto& xseg = xw.segments.at(segNum);
BOOST_CHECK_EQUAL(xseg.segNumber, segNum);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::wat),
rateTop + 100.0*(segNum - 1), 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::oil),
rateTop + 200.0*(segNum - 1), 1.0e-10);
BOOST_CHECK_CLOSE(xseg.rates.get(Opm::data::Rates::opt::gas),
rateTop + 400.0*(segNum - 1), 1.0e-10);
}
}
}
// ---------------------------------------------------------------------
BOOST_AUTO_TEST_CASE(STOP_well)
{
/*
This test verifies that the perforation pressures is correctly initialized
also for wells in the STOP state.
*/
const Setup setup{ "wells_manager_data_wellSTOP.data" };
std::vector<Opm::ParallelWellInfo> pinfos;
auto wstate = buildWellState(setup, 0, pinfos);
for (const auto& p : wstate.perfPress())
BOOST_CHECK(p > 0);
}
BOOST_AUTO_TEST_SUITE_END()