opm-simulators/opm/simulators/flow/FlowMainEbos.hpp
Håkon Hægland f9d47b7c68 Capture some variables in FlowMainEbos.
Make Opm::FlowMainEbos capture the variables argc, argv, outputCout, and
outputFiles. Passing the variables to the constructor and saving them as
class variables in Opm::FlowMainEbos makes the implementation of the
Python interface simpler. For example, the step_init() method does not
need to ask Opm::Main about the values of the variables when it needs to
run execute() in FlowMainEbos.

Another advantage of this refactoring could be that less variables needs
to be passed around from Opm::Main, to flow_ebos_xxx.cpp, and then again
to FlowMainEbos.
2020-08-24 00:19:19 +02:00

652 lines
27 KiB
C++

/*
Copyright 2013, 2014, 2015 SINTEF ICT, Applied Mathematics.
Copyright 2014 Dr. Blatt - HPC-Simulation-Software & Services
Copyright 2015 IRIS AS
Copyright 2014 STATOIL ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#define OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED
#include <sys/utsname.h>
#include <opm/simulators/flow/BlackoilModelEbos.hpp>
#include <opm/simulators/flow/SimulatorFullyImplicitBlackoilEbos.hpp>
#include <opm/simulators/utils/ParallelFileMerger.hpp>
#include <opm/simulators/utils/moduleVersion.hpp>
#include <opm/simulators/linalg/ExtractParallelGridInformationToISTL.hpp>
#include <opm/core/props/satfunc/RelpermDiagnostics.hpp>
#include <opm/parser/eclipse/Deck/Deck.hpp>
#include <opm/parser/eclipse/Parser/Parser.hpp>
#include <opm/parser/eclipse/Parser/ParseContext.hpp>
#include <opm/parser/eclipse/EclipseState/EclipseState.hpp>
#include <opm/parser/eclipse/EclipseState/IOConfig/IOConfig.hpp>
#include <opm/parser/eclipse/EclipseState/InitConfig/InitConfig.hpp>
#include <opm/parser/eclipse/EclipseState/checkDeck.hpp>
#include <opm/common/utility/String.hpp>
#if HAVE_DUNE_FEM
#include <dune/fem/misc/mpimanager.hh>
#else
#include <dune/common/parallel/mpihelper.hh>
#endif
namespace Opm::Properties {
NEW_PROP_TAG(EnableDryRun);
NEW_PROP_TAG(OutputInterval);
NEW_PROP_TAG(EnableLoggingFalloutWarning);
// TODO: enumeration parameters. we use strings for now.
SET_STRING_PROP(EclFlowProblem, EnableDryRun, "auto");
// Do not merge parallel output files or warn about them
SET_BOOL_PROP(EclFlowProblem, EnableLoggingFalloutWarning, false);
SET_INT_PROP(EclFlowProblem, OutputInterval, 1);
} // namespace Opm::Properties
namespace Opm
{
// The FlowMain class is the ebos based black-oil simulator.
template <class TypeTag>
class FlowMainEbos
{
public:
typedef typename GET_PROP(TypeTag, MaterialLaw)::EclMaterialLawManager MaterialLawManager;
typedef typename GET_PROP_TYPE(TypeTag, Simulator) EbosSimulator;
typedef typename GET_PROP_TYPE(TypeTag, Grid) Grid;
typedef typename GET_PROP_TYPE(TypeTag, GridView) GridView;
typedef typename GET_PROP_TYPE(TypeTag, Problem) Problem;
typedef typename GET_PROP_TYPE(TypeTag, Scalar) Scalar;
typedef typename GET_PROP_TYPE(TypeTag, FluidSystem) FluidSystem;
typedef Opm::SimulatorFullyImplicitBlackoilEbos<TypeTag> Simulator;
FlowMainEbos(int argc, char **argv, bool output_cout, bool output_files )
: argc_{argc}, argv_{argv},
output_cout_{output_cout}, output_files_{output_files}
{
}
// Read the command line parameters. Throws an exception if something goes wrong.
static int setupParameters_(int argc, char** argv)
{
using ParamsMeta = typename GET_PROP(TypeTag, ParameterMetaData);
if (!ParamsMeta::registrationOpen()) {
// We have already successfully run setupParameters_().
// For the dynamically chosen runs (as from the main flow
// executable) we must run this function again with the
// real typetag to be used, as the first time was with the
// "FlowEarlyBird" typetag. However, for the static ones (such
// as 'flow_onephase_energy') it has already been run with the
// correct typetag.
return EXIT_SUCCESS;
}
// register the flow specific parameters
EWOMS_REGISTER_PARAM(TypeTag, std::string, EnableDryRun,
"Specify if the simulation ought to be actually run, or just pretended to be");
EWOMS_REGISTER_PARAM(TypeTag, int, OutputInterval,
"Specify the number of report steps between two consecutive writes of restart data");
EWOMS_REGISTER_PARAM(TypeTag, bool, EnableLoggingFalloutWarning,
"Developer option to see whether logging was on non-root processors. In that case it will be appended to the *.DBG or *.PRT files");
Simulator::registerParameters();
// register the parameters inherited from ebos
Opm::registerAllParameters_<TypeTag>(/*finalizeRegistration=*/false);
// hide the parameters unused by flow. TODO: this is a pain to maintain
EWOMS_HIDE_PARAM(TypeTag, EnableGravity);
EWOMS_HIDE_PARAM(TypeTag, EnableGridAdaptation);
// this parameter is actually used in eWoms, but the flow well model
// hard-codes the assumption that the intensive quantities cache is enabled,
// so flow crashes. Let's hide the parameter for that reason.
EWOMS_HIDE_PARAM(TypeTag, EnableIntensiveQuantityCache);
// thermodynamic hints are not implemented/required by the eWoms blackoil
// model
EWOMS_HIDE_PARAM(TypeTag, EnableThermodynamicHints);
// in flow only the deck file determines the end time of the simulation
EWOMS_HIDE_PARAM(TypeTag, EndTime);
// time stepping is not done by the eWoms code in flow
EWOMS_HIDE_PARAM(TypeTag, InitialTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepDivisions);
EWOMS_HIDE_PARAM(TypeTag, MaxTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, MinTimeStepSize);
EWOMS_HIDE_PARAM(TypeTag, PredeterminedTimeStepsFile);
EWOMS_HIDE_PARAM(TypeTag, EclMaxTimeStepSizeAfterWellEvent);
EWOMS_HIDE_PARAM(TypeTag, EclRestartShrinkFactor);
EWOMS_HIDE_PARAM(TypeTag, EclEnableTuning);
// flow also does not use the eWoms Newton method
EWOMS_HIDE_PARAM(TypeTag, NewtonMaxError);
EWOMS_HIDE_PARAM(TypeTag, NewtonMaxIterations);
EWOMS_HIDE_PARAM(TypeTag, NewtonTolerance);
EWOMS_HIDE_PARAM(TypeTag, NewtonTargetIterations);
EWOMS_HIDE_PARAM(TypeTag, NewtonVerbose);
EWOMS_HIDE_PARAM(TypeTag, NewtonWriteConvergence);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumTolerance);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonSumToleranceExponent);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonStrictIterations);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedVolumeFraction);
EWOMS_HIDE_PARAM(TypeTag, EclNewtonRelaxedTolerance);
// the default eWoms checkpoint/restart mechanism does not work with flow
EWOMS_HIDE_PARAM(TypeTag, RestartTime);
EWOMS_HIDE_PARAM(TypeTag, RestartWritingInterval);
// hide all vtk related it is not currently possible to do this dependet on if the vtk writing is used
//if(not(EWOMS_GET_PARAM(TypeTag,bool,EnableVtkOutput))){
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePorosity);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePotentialGradients);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePressures);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVars);
EWOMS_HIDE_PARAM(TypeTag, VtkWritePrimaryVarsMeaning);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteProcessRank);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteRelativePermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedGasOilVaporizationFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturatedOilGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturationRatios);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteSaturations);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTemperature);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteViscosities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteWaterFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasDissolutionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasFormationVolumeFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteGasSaturationPressure);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteIntrinsicPermeabilities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteEclTracerConcentration);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteExtrusionFactor);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFilterVelocities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDensities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteDofIndex);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMobilities);
//}
EWOMS_HIDE_PARAM(TypeTag, VtkWriteAverageMolarMasses);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteFugacityCoeffs);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMolarities);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteMoleFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMassFractions);
EWOMS_HIDE_PARAM(TypeTag, VtkWriteTotalMoleFractions);
EWOMS_END_PARAM_REGISTRATION(TypeTag);
int mpiRank = 0;
#if HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpiRank);
#endif
// read in the command line parameters
int status = Opm::setupParameters_<TypeTag>(argc, const_cast<const char**>(argv), /*doRegistration=*/false, /*allowUnused=*/true, /*handleHelp=*/(mpiRank==0));
if (status == 0) {
// deal with unknown parameters.
int unknownKeyWords = 0;
if (mpiRank == 0) {
unknownKeyWords = Opm::Parameters::printUnused<TypeTag>(std::cerr);
}
#if HAVE_MPI
int globalUnknownKeyWords;
MPI_Allreduce(&unknownKeyWords, &globalUnknownKeyWords, 1, MPI_INT, MPI_SUM, MPI_COMM_WORLD);
unknownKeyWords = globalUnknownKeyWords;
#endif
if ( unknownKeyWords )
{
if ( mpiRank == 0 )
{
std::string msg = "Aborting simulation due to unknown "
"parameters. Please query \"flow --help\" for "
"supported command line parameters.";
if (OpmLog::hasBackend("STREAMLOG"))
{
OpmLog::error(msg);
}
else {
std::cerr << msg << std::endl;
}
}
return EXIT_FAILURE;
}
// deal with --print-properties and --print-parameters and unknown parameters.
bool doExit = false;
if (EWOMS_GET_PARAM(TypeTag, int, PrintProperties) == 1) {
doExit = true;
if (mpiRank == 0)
Opm::Properties::printValues<TypeTag>();
}
if (EWOMS_GET_PARAM(TypeTag, int, PrintParameters) == 1) {
doExit = true;
if (mpiRank == 0)
Opm::Parameters::printValues<TypeTag>();
}
if (doExit)
return -1;
}
return status;
}
static void printBanner()
{
const int lineLen = 70;
const std::string version = moduleVersionName();
const std::string banner = "This is flow "+version;
const int bannerPreLen = (lineLen - 2 - banner.size())/2;
const int bannerPostLen = bannerPreLen + (lineLen - 2 - banner.size())%2;
std::cout << "**********************************************************************\n";
std::cout << "* *\n";
std::cout << "*" << std::string(bannerPreLen, ' ') << banner << std::string(bannerPostLen, ' ') << "*\n";
std::cout << "* *\n";
std::cout << "* Flow is a simulator for fully implicit three-phase black-oil flow, *\n";
std::cout << "* including solvent and polymer capabilities. *\n";
std::cout << "* For more information, see https://opm-project.org *\n";
std::cout << "* *\n";
std::cout << "**********************************************************************\n\n";
int threads = 1;
int mpiSize = 1;
#ifdef _OPENMP
// This function is called before the parallel OpenMP stuff gets initialized.
// That initialization happends after the deck is read and we want this message.
// Hence we duplicate the code of setupParallelism to get the number of threads.
if (getenv("OMP_NUM_THREADS"))
threads = omp_get_max_threads();
else
threads = std::min(2, omp_get_max_threads());
#endif
#if HAVE_MPI
MPI_Comm_size(MPI_COMM_WORLD, &mpiSize);
#endif
std::cout << "Using "<< mpiSize << " MPI processes with "<< threads <<" OMP threads on each \n\n";
}
/// This is the main function of Flow. It runs a complete simulation with the
/// given grid and simulator classes, based on the user-specified command-line
/// input.
int execute()
{
return execute_(&FlowMainEbos::runSimulator, /*cleanup=*/true);
}
// Print an ASCII-art header to the PRT and DEBUG files.
// \return Whether unkown keywords were seen during parsing.
static void printPRTHeader(bool output_cout)
{
if (output_cout) {
const std::string version = moduleVersion();
const double megabyte = 1024 * 1024;
unsigned num_cpu = std::thread::hardware_concurrency();
struct utsname arch;
const char* user = getlogin();
time_t now = std::time(0);
struct tm tstruct;
char tmstr[80];
tstruct = *localtime(&now);
strftime(tmstr, sizeof(tmstr), "%d-%m-%Y at %X", &tstruct);
const double mem_size = getTotalSystemMemory() / megabyte;
std::ostringstream ss;
ss << "\n\n\n";
ss << " ######## # ###### # #\n";
ss << " # # # # # # \n";
ss << " ##### # # # # # # \n";
ss << " # # # # # # # # \n";
ss << " # ####### ###### # # \n\n";
ss << "Flow is a simulator for fully implicit three-phase black-oil flow,";
ss << " and is part of OPM.\nFor more information visit: https://opm-project.org \n\n";
ss << "Flow Version = " + version + "\n";
if (uname(&arch) == 0) {
ss << "Machine name = " << arch.nodename << " (Number of logical cores: " << num_cpu;
ss << ", Memory size: " << std::fixed << std::setprecision (2) << mem_size << " MB) \n";
ss << "Operating system = " << arch.sysname << " " << arch.machine << " (Kernel: " << arch.release;
ss << ", " << arch.version << " )\n";
ss << "Build time = " << compileTimestamp() << "\n";
}
if (user) {
ss << "User = " << user << std::endl;
}
ss << "Simulation started on " << tmstr << " hrs\n";
ss << "Parameters used by Flow:\n";
Opm::Parameters::printValues<TypeTag>(ss);
OpmLog::note(ss.str());
}
}
private:
// called by execute() or executeInitStep()
int execute_(int (FlowMainEbos::* runOrInitFunc)(), bool cleanup)
{
try {
// deal with some administrative boilerplate
int status = setupParameters_(argc_, argv_);
if (status)
return status;
setupParallelism();
setupEbosSimulator();
runDiagnostics();
createSimulator();
// if run, do the actual work, else just initialize
int exitCode = (this->*runOrInitFunc)();
if (cleanup) {
executeCleanup_();
}
return exitCode;
}
catch (const std::exception& e) {
std::ostringstream message;
message << "Program threw an exception: " << e.what();
if (output_cout_) {
// in some cases exceptions are thrown before the logging system is set
// up.
if (OpmLog::hasBackend("STREAMLOG")) {
OpmLog::error(message.str());
}
else {
std::cout << message.str() << "\n";
}
}
return EXIT_FAILURE;
}
}
void executeCleanup_() {
// clean up
mergeParallelLogFiles();
}
protected:
void setupParallelism()
{
// determine the rank of the current process and the number of processes
// involved in the simulation. MPI must have already been initialized
// here. (yes, the name of this method is misleading.)
#if HAVE_MPI
MPI_Comm_rank(MPI_COMM_WORLD, &mpi_rank_);
MPI_Comm_size(MPI_COMM_WORLD, &mpi_size_);
#else
mpi_rank_ = 0;
mpi_size_ = 1;
#endif
#if _OPENMP
// if openMP is available, default to 2 threads per process.
if (!getenv("OMP_NUM_THREADS"))
omp_set_num_threads(std::min(2, omp_get_num_procs()));
#endif
typedef typename GET_PROP_TYPE(TypeTag, ThreadManager) ThreadManager;
ThreadManager::init();
}
void mergeParallelLogFiles()
{
// force closing of all log files.
OpmLog::removeAllBackends();
if (mpi_rank_ != 0 || mpi_size_ < 2 || !output_files_) {
return;
}
namespace fs = Opm::filesystem;
const std::string& output_dir = eclState().getIOConfig().getOutputDir();
fs::path output_path(output_dir);
fs::path deck_filename(EWOMS_GET_PARAM(TypeTag, std::string, EclDeckFileName));
std::string basename;
// Strip extension "." and ".DATA"
std::string extension = uppercase(deck_filename.extension().string());
if ( extension == ".DATA" || extension == "." )
{
basename = uppercase(deck_filename.stem().string());
}
else
{
basename = uppercase(deck_filename.filename().string());
}
std::for_each(fs::directory_iterator(output_path),
fs::directory_iterator(),
detail::ParallelFileMerger(output_path, basename,
EWOMS_GET_PARAM(TypeTag, bool, EnableLoggingFalloutWarning)));
}
void setupEbosSimulator()
{
ebosSimulator_.reset(new EbosSimulator(/*verbose=*/false));
ebosSimulator_->executionTimer().start();
ebosSimulator_->model().applyInitialSolution();
try {
// Possible to force initialization only behavior (NOSIM).
const std::string& dryRunString = EWOMS_GET_PARAM(TypeTag, std::string, EnableDryRun);
if (dryRunString != "" && dryRunString != "auto") {
bool yesno;
if (dryRunString == "true"
|| dryRunString == "t"
|| dryRunString == "1")
yesno = true;
else if (dryRunString == "false"
|| dryRunString == "f"
|| dryRunString == "0")
yesno = false;
else
throw std::invalid_argument("Invalid value for parameter EnableDryRun: '"
+dryRunString+"'");
auto& ioConfig = eclState().getIOConfig();
ioConfig.overrideNOSIM(yesno);
}
}
catch (const std::invalid_argument& e) {
std::cerr << "Failed to create valid EclipseState object" << std::endl;
std::cerr << "Exception caught: " << e.what() << std::endl;
throw;
}
}
const Deck& deck() const
{ return ebosSimulator_->vanguard().deck(); }
Deck& deck()
{ return ebosSimulator_->vanguard().deck(); }
const EclipseState& eclState() const
{ return ebosSimulator_->vanguard().eclState(); }
EclipseState& eclState()
{ return ebosSimulator_->vanguard().eclState(); }
const Schedule& schedule() const
{ return ebosSimulator_->vanguard().schedule(); }
// Run diagnostics.
// Writes to:
// OpmLog singleton.
void runDiagnostics()
{
if (!output_cout_) {
return;
}
// Run relperm diagnostics if we have more than one phase.
if (FluidSystem::numActivePhases() > 1) {
RelpermDiagnostics diagnostic;
if (mpi_size_ > 1) {
#if HAVE_MPI
this->grid().switchToGlobalView();
static_cast<ParallelEclipseState&>(this->eclState()).switchToGlobalProps();
#endif
}
diagnostic.diagnosis(eclState(), this->grid());
if (mpi_size_ > 1) {
#if HAVE_MPI
this->grid().switchToDistributedView();
static_cast<ParallelEclipseState&>(this->eclState()).switchToDistributedProps();
#endif
}
}
}
// Run the simulator.
int runSimulator()
{
return runSimulatorInitOrRun_(&FlowMainEbos::runSimulatorRunCallback_);
}
private:
// Callback that will be called from runSimulatorInitOrRun_().
int runSimulatorRunCallback_()
{
SimulatorReport report = simulator_->run(*simtimer_);
runSimulatorAfterSim_(report);
return report.success.exit_status;
}
// Output summary after simulation has completed
void runSimulatorAfterSim_(SimulatorReport &report)
{
if (output_cout_) {
std::ostringstream ss;
ss << "\n\n================ End of simulation ===============\n\n";
ss << "Number of MPI processes: " << std::setw(6) << mpi_size_ << "\n";
#if _OPENMP
int threads = omp_get_max_threads();
#else
int threads = 1;
#endif
ss << "Threads per MPI process: " << std::setw(5) << threads << "\n";
report.reportFullyImplicit(ss);
OpmLog::info(ss.str());
const std::string dir = eclState().getIOConfig().getOutputDir();
namespace fs = Opm::filesystem;
fs::path output_dir(dir);
{
std::string filename = eclState().getIOConfig().getBaseName() + ".INFOSTEP";
fs::path fullpath = output_dir / filename;
std::ofstream os(fullpath.string());
report.fullReports(os);
}
}
}
// Run the simulator.
int runSimulatorInitOrRun_(int (FlowMainEbos::* initOrRunFunc)())
{
const auto& schedule = this->schedule();
const auto& timeMap = schedule.getTimeMap();
auto& ioConfig = eclState().getIOConfig();
simtimer_ = std::make_unique<SimulatorTimer>();
// initialize variables
const auto& initConfig = eclState().getInitConfig();
simtimer_->init(timeMap, (size_t)initConfig.getRestartStep());
if (output_cout_) {
std::ostringstream oss;
// This allows a user to catch typos and misunderstandings in the
// use of simulator parameters.
if (Opm::Parameters::printUnused<TypeTag>(oss)) {
std::cout << "----------------- Unrecognized parameters: -----------------\n";
std::cout << oss.str();
std::cout << "----------------------------------------------------------------" << std::endl;
}
}
if (!ioConfig.initOnly()) {
if (output_cout_) {
std::string msg;
msg = "\n\n================ Starting main simulation loop ===============\n";
OpmLog::info(msg);
}
return (this->*initOrRunFunc)();
}
else {
if (output_cout_) {
std::cout << "\n\n================ Simulation turned off ===============\n" << std::flush;
}
return EXIT_SUCCESS;
}
}
protected:
/// This is the main function of Flow.
// Create simulator instance.
// Writes to:
// simulator_
void createSimulator()
{
// Create the simulator instance.
simulator_.reset(new Simulator(*ebosSimulator_));
}
static unsigned long long getTotalSystemMemory()
{
long pages = sysconf(_SC_PHYS_PAGES);
long page_size = sysconf(_SC_PAGE_SIZE);
return pages * page_size;
}
Grid& grid()
{ return ebosSimulator_->vanguard().grid(); }
private:
std::unique_ptr<EbosSimulator> ebosSimulator_;
int mpi_rank_ = 0;
int mpi_size_ = 1;
std::any parallel_information_;
std::unique_ptr<Simulator> simulator_;
std::unique_ptr<SimulatorTimer> simtimer_;
int argc_;
char **argv_;
bool output_cout_;
bool output_files_;
};
} // namespace Opm
#endif // OPM_FLOW_MAIN_EBOS_HEADER_INCLUDED