opm-simulators/opm/models/discretization/common/fvbaseproblem.hh

840 lines
30 KiB
C++

// -*- mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*-
// vi: set et ts=4 sw=4 sts=4:
/*
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
Consult the COPYING file in the top-level source directory of this
module for the precise wording of the license and the list of
copyright holders.
*/
/*!
* \file
*
* \copydoc Opm::FvBaseProblem
*/
#ifndef EWOMS_FV_BASE_PROBLEM_HH
#define EWOMS_FV_BASE_PROBLEM_HH
#include <opm/models/discretization/common/fvbaseparameters.hh>
#include <opm/models/discretization/common/fvbaseproperties.hh>
#include <opm/models/io/vtkmultiwriter.hh>
#include <opm/models/io/restart.hh>
#include <opm/models/discretization/common/restrictprolong.hh>
#include <dune/common/fvector.hh>
#include <iostream>
#include <limits>
#include <string>
#include <sys/stat.h>
namespace Opm::Properties {
template <class TypeTag, class MyTypeTag>
struct NewtonMethod;
} // namespace Opm::Properties
namespace Opm {
/*!
* \ingroup FiniteVolumeDiscretizations
*
* \brief Base class for all problems which use a finite volume spatial discretization.
*
* \note All quantities are specified assuming a threedimensional world. Problems
* discretized using 2D grids are assumed to be extruded by \f$1 m\f$ and 1D grids
* are assumed to have a cross section of \f$1m \times 1m\f$.
*/
template<class TypeTag>
class FvBaseProblem
{
private:
using Implementation = GetPropType<TypeTag, Properties::Problem>;
using GridView = GetPropType<TypeTag, Properties::GridView>;
static const int vtkOutputFormat = getPropValue<TypeTag, Properties::VtkOutputFormat>();
using VtkMultiWriter = ::Opm::VtkMultiWriter<GridView, vtkOutputFormat>;
using Model = GetPropType<TypeTag, Properties::Model>;
using Scalar = GetPropType<TypeTag, Properties::Scalar>;
using Simulator = GetPropType<TypeTag, Properties::Simulator>;
using ThreadManager = GetPropType<TypeTag, Properties::ThreadManager>;
using NewtonMethod = GetPropType<TypeTag, Properties::NewtonMethod>;
using VertexMapper = GetPropType<TypeTag, Properties::VertexMapper>;
using ElementMapper = GetPropType<TypeTag, Properties::ElementMapper>;
using RateVector = GetPropType<TypeTag, Properties::RateVector>;
using BoundaryRateVector = GetPropType<TypeTag, Properties::BoundaryRateVector>;
using PrimaryVariables = GetPropType<TypeTag, Properties::PrimaryVariables>;
using Constraints = GetPropType<TypeTag, Properties::Constraints>;
enum {
dim = GridView::dimension,
dimWorld = GridView::dimensionworld
};
using Element = typename GridView::template Codim<0>::Entity;
using Vertex = typename GridView::template Codim<dim>::Entity;
using VertexIterator = typename GridView::template Codim<dim>::Iterator;
using CoordScalar = typename GridView::Grid::ctype;
using GlobalPosition = Dune::FieldVector<CoordScalar, dimWorld>;
public:
// the default restriction and prolongation for adaptation is simply an empty one
using RestrictProlongOperator = EmptyRestrictProlong ;
private:
// copying a problem is not a good idea
FvBaseProblem(const FvBaseProblem& ) = delete;
public:
/*!
* \copydoc Doxygen::defaultProblemConstructor
*
* \param simulator The time manager of the simulation
* \param gridView The view on the DUNE grid which ought to be
* used (normally the leaf grid view)
*/
FvBaseProblem(Simulator& simulator)
: nextTimeStepSize_(0.0)
, gridView_(simulator.gridView())
, elementMapper_(gridView_, Dune::mcmgElementLayout())
, vertexMapper_(gridView_, Dune::mcmgVertexLayout())
, boundingBoxMin_(std::numeric_limits<double>::max())
, boundingBoxMax_(-std::numeric_limits<double>::max())
, simulator_(simulator)
, defaultVtkWriter_(0)
{
// calculate the bounding box of the local partition of the grid view
VertexIterator vIt = gridView_.template begin<dim>();
const VertexIterator vEndIt = gridView_.template end<dim>();
for (; vIt!=vEndIt; ++vIt) {
for (unsigned i=0; i<dim; i++) {
boundingBoxMin_[i] = std::min(boundingBoxMin_[i], vIt->geometry().corner(0)[i]);
boundingBoxMax_[i] = std::max(boundingBoxMax_[i], vIt->geometry().corner(0)[i]);
}
}
// communicate to get the bounding box of the whole domain
for (unsigned i = 0; i < dim; ++i) {
boundingBoxMin_[i] = gridView_.comm().min(boundingBoxMin_[i]);
boundingBoxMax_[i] = gridView_.comm().max(boundingBoxMax_[i]);
}
if (enableVtkOutput_()) {
bool asyncVtkOutput =
simulator_.gridView().comm().size() == 1 &&
Parameters::get<TypeTag, Parameters::EnableAsyncVtkOutput>();
// asynchonous VTK output currently does not work in conjunction with grid
// adaptivity because the async-IO code assumes that the grid stays
// constant. complain about that case.
bool enableGridAdaptation = Parameters::get<TypeTag, Parameters::EnableGridAdaptation>();
if (asyncVtkOutput && enableGridAdaptation)
throw std::runtime_error("Asynchronous VTK output currently cannot be used "
"at the same time as grid adaptivity");
std::string outputDir = asImp_().outputDir();
defaultVtkWriter_ =
new VtkMultiWriter(asyncVtkOutput, gridView_, outputDir, asImp_().name());
}
}
~FvBaseProblem()
{ delete defaultVtkWriter_; }
/*!
* \brief Registers all available parameters for the problem and
* the model.
*/
static void registerParameters()
{
Model::registerParameters();
Parameters::registerParam<TypeTag, Parameters::MaxTimeStepSize>
("The maximum size to which all time steps are limited to [s]");
Parameters::registerParam<TypeTag, Parameters::MinTimeStepSize>
("The minimum size to which all time steps are limited to [s]");
Parameters::registerParam<TypeTag, Parameters::MaxTimeStepDivisions>
("The maximum number of divisions by two of the timestep size "
"before the simulation bails out");
Parameters::registerParam<TypeTag, Parameters::EnableAsyncVtkOutput>
("Dispatch a separate thread to write the VTK output");
Parameters::registerParam<TypeTag, Parameters::ContinueOnConvergenceError>
("Continue with a non-converged solution instead of giving up "
"if we encounter a time step size smaller than the minimum time "
"step size.");
}
/*!
* \brief Return if the storage term of the first iteration is identical to the storage
* term for the solution of the previous time step.
*
* This is only relevant if the storage cache is enabled and is usually the case,
* i.e., this method only needs to be overwritten in rare corner cases.
*/
bool recycleFirstIterationStorage() const
{ return true; }
/*!
* \brief Determine the directory for simulation output.
*
* The actual problem may chose to transform the value of the OutputDir parameter and
* it can e.g. choose to create the directory on demand if it does not exist. The
* default behaviour is to just return the OutputDir parameter and to throw an
* exception if no directory with this name exists.
*/
std::string outputDir() const
{
std::string outputDir = Parameters::get<TypeTag, Parameters::OutputDir>();
if (outputDir.empty())
outputDir = ".";
// TODO: replace this by std::filesystem once we require c++-2017
struct stat st;
if (::stat(outputDir.c_str(), &st) != 0)
throw std::runtime_error("Could not access output directory '"+outputDir+"':"
+strerror(errno));
if (!S_ISDIR(st.st_mode))
throw std::runtime_error("Path to output directory '"+outputDir+"' exists but is not a directory");
if (access(outputDir.c_str(), W_OK) != 0)
throw std::runtime_error("Output directory '"+outputDir+"' exists but is not writeable");
return outputDir;
}
/*!
* \brief Returns the string that is printed before the list of command line
* parameters in the help message.
*
* If the returned string is empty, no help message will be generated.
*/
static std::string helpPreamble(int,
const char **argv)
{
std::string desc = Implementation::briefDescription();
if (!desc.empty())
desc = desc + "\n";
return
"Usage: "+std::string(argv[0]) + " [OPTIONS]\n"
+ desc;
}
/*!
* \brief Returns a human readable description of the problem for the help message
*
* The problem description is printed as part of the --help message. It is optional
* and should not exceed one or two lines of text.
*/
static std::string briefDescription()
{ return ""; }
// TODO (?): detailedDescription()
/*!
* \brief Handles positional command line parameters.
*
* Positional parameters are parameters that are not prefixed by any parameter name.
*
* \param seenParams The parameters which have already been seen in the current context
* \param errorMsg If the positional argument cannot be handled, this is the reason why
* \param argc The total number of command line parameters
* \param argv The string value of the command line parameters
* \param paramIdx The index of the positional parameter in the array of all parameters
* \param posParamIdx The number of the positional parameter encountered so far
*
* \return The number of array entries which ought to be skipped before processing
* the next regular parameter. If this is less than 1, it indicated that the
* positional parameter was invalid.
*/
static int handlePositionalParameter(std::set<std::string>&,
std::string& errorMsg,
int,
const char** argv,
int paramIdx,
int)
{
errorMsg = std::string("Illegal parameter \"")+argv[paramIdx]+"\".";
return 0;
}
/*!
* \brief Called by the Opm::Simulator in order to initialize the problem.
*
* If you overload this method don't forget to call ParentType::finishInit()
*/
void finishInit()
{ }
/*!
* \brief Allows to improve the performance by prefetching all data which is
* associated with a given element.
*/
void prefetch(const Element&) const
{
// do nothing by default
}
/*!
* \brief Handle changes of the grid
*/
void gridChanged()
{
#if DUNE_VERSION_NEWER(DUNE_GRID, 2, 8)
elementMapper_.update(gridView_);
vertexMapper_.update(gridView_);
#else
elementMapper_.update();
vertexMapper_.update();
#endif
if (enableVtkOutput_())
defaultVtkWriter_->gridChanged();
}
/*!
* \brief Evaluate the boundary conditions for a boundary segment.
*
* \param values Stores the fluxes over the boundary segment.
* \param context The object representing the execution context from
* which this method is called.
* \param spaceIdx The local index of the spatial entity which represents the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void boundary(BoundaryRateVector&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a boundary() method"); }
/*!
* \brief Evaluate the constraints for a control volume.
*
* \param constraints Stores the values of the primary variables at a
* given spatial and temporal location.
* \param context The object representing the execution context from
* which this method is called.
* \param spaceIdx The local index of the spatial entity which represents the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void constraints(Constraints&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a constraints() method"); }
/*!
* \brief Evaluate the source term for all phases within a given
* sub-control-volume.
*
* \param rate Stores the values of the volumetric creation/anihilition
* rates of the conserved quantities.
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void source(RateVector&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a source() method"); }
/*!
* \brief Evaluate the initial value for a control volume.
*
* \param values Stores the primary variables.
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
void initial(PrimaryVariables&,
const Context&,
unsigned,
unsigned) const
{ throw std::logic_error("Problem does not provide a initial() method"); }
/*!
* \brief Return how much the domain is extruded at a given sub-control volume.
*
* This means the factor by which a lower-dimensional (1D or 2D)
* entity needs to be expanded to get a full dimensional cell. The
* default is 1.0 which means that 1D problems are actually
* thought as pipes with a cross section of 1 m^2 and 2D problems
* are assumed to extend 1 m to the back.
*
* \param context The object representing the execution context from which
* this method is called.
* \param spaceIdx The local index of the spatial entity which represents
* the boundary segment.
* \param timeIdx The index used for the time discretization
*/
template <class Context>
Scalar extrusionFactor(const Context&,
unsigned,
unsigned) const
{ return asImp_().extrusionFactor(); }
Scalar extrusionFactor() const
{ return 1.0; }
/*!
* \brief Callback used by the model to indicate that the initial solution has been
* determined for all degrees of freedom.
*/
void initialSolutionApplied()
{}
/*!
* \brief Called at the beginning of an simulation episode.
*/
void beginEpisode()
{ }
/*!
* \brief Called by the simulator before each time integration.
*/
void beginTimeStep()
{ }
/*!
* \brief Called by the simulator before each Newton-Raphson iteration.
*/
void beginIteration()
{ }
/*!
* \brief Called by the simulator after each Newton-Raphson update.
*/
void endIteration()
{ }
/*!
* \brief Called by the simulator after each time integration.
*
* This method is intended to do some post processing of the
* solution. (e.g., some additional output)
*/
void endTimeStep()
{ }
/*!
* \brief Called when the end of an simulation episode is reached.
*
* Typically, a new episode is started in this method.
*/
void endEpisode()
{
std::cerr << "The end of episode " << simulator().episodeIndex() + 1 << " has been "
<< "reached, but the problem does not override the endEpisode() method. "
<< "Doing nothing!\n";
}
/*!
* \brief Called after the simulation has been run sucessfully.
*/
void finalize()
{
const auto& executionTimer = simulator().executionTimer();
Scalar executionTime = executionTimer.realTimeElapsed();
Scalar setupTime = simulator().setupTimer().realTimeElapsed();
Scalar prePostProcessTime = simulator().prePostProcessTimer().realTimeElapsed();
Scalar localCpuTime = executionTimer.cpuTimeElapsed();
Scalar globalCpuTime = executionTimer.globalCpuTimeElapsed();
Scalar writeTime = simulator().writeTimer().realTimeElapsed();
Scalar linearizeTime = simulator().linearizeTimer().realTimeElapsed();
Scalar solveTime = simulator().solveTimer().realTimeElapsed();
Scalar updateTime = simulator().updateTimer().realTimeElapsed();
unsigned numProcesses = static_cast<unsigned>(this->gridView().comm().size());
unsigned threadsPerProcess = ThreadManager::maxThreads();
if (gridView().comm().rank() == 0) {
std::cout << std::setprecision(3)
<< "Simulation of problem '" << asImp_().name() << "' finished.\n"
<< "\n"
<< "------------------------ Timing ------------------------\n"
<< "Setup time: " << setupTime << " seconds" << Simulator::humanReadableTime(setupTime)
<< ", " << setupTime/(executionTime + setupTime)*100 << "%\n"
<< "Simulation time: " << executionTime << " seconds" << Simulator::humanReadableTime(executionTime)
<< ", " << executionTime/(executionTime + setupTime)*100 << "%\n"
<< " Linearization time: " << linearizeTime << " seconds" << Simulator::humanReadableTime(linearizeTime)
<< ", " << linearizeTime/executionTime*100 << "%\n"
<< " Linear solve time: " << solveTime << " seconds" << Simulator::humanReadableTime(solveTime)
<< ", " << solveTime/executionTime*100 << "%\n"
<< " Newton update time: " << updateTime << " seconds" << Simulator::humanReadableTime(updateTime)
<< ", " << updateTime/executionTime*100 << "%\n"
<< " Pre/postprocess time: " << prePostProcessTime << " seconds" << Simulator::humanReadableTime(prePostProcessTime)
<< ", " << prePostProcessTime/executionTime*100 << "%\n"
<< " Output write time: " << writeTime << " seconds" << Simulator::humanReadableTime(writeTime)
<< ", " << writeTime/executionTime*100 << "%\n"
<< "First process' simulation CPU time: " << localCpuTime << " seconds" << Simulator::humanReadableTime(localCpuTime) << "\n"
<< "Number of processes: " << numProcesses << "\n"
<< "Threads per processes: " << threadsPerProcess << "\n"
<< "Total CPU time: " << globalCpuTime << " seconds" << Simulator::humanReadableTime(globalCpuTime) << "\n"
<< "\n"
<< "----------------------------------------------------------------\n"
<< std::endl;
}
}
/*!
* \brief Called by Opm::Simulator in order to do a time
* integration on the model.
*/
void timeIntegration()
{
unsigned maxFails = asImp_().maxTimeIntegrationFailures();
Scalar minTimeStepSize = asImp_().minTimeStepSize();
std::string errorMessage;
for (unsigned i = 0; i < maxFails; ++i) {
bool converged = model().update();
if (converged)
return;
Scalar dt = simulator().timeStepSize();
Scalar nextDt = dt / 2.0;
if (dt < minTimeStepSize*(1 + 1e-9)) {
if (asImp_().continueOnConvergenceError()) {
if (gridView().comm().rank() == 0)
std::cout << "Newton solver did not converge with minimum time step of "
<< dt << " seconds. Continuing with unconverged solution!\n"
<< std::flush;
return;
}
else {
errorMessage =
"Time integration did not succeed with the minumum time step size of "
+ std::to_string(double(minTimeStepSize)) + " seconds. Giving up!";
break; // give up: we can't make the time step smaller anymore!
}
}
else if (nextDt < minTimeStepSize)
nextDt = minTimeStepSize;
simulator().setTimeStepSize(nextDt);
// update failed
if (gridView().comm().rank() == 0)
std::cout << "Newton solver did not converge with "
<< "dt=" << dt << " seconds. Retrying with time step of "
<< nextDt << " seconds\n" << std::flush;
}
if (errorMessage.empty())
errorMessage =
"Newton solver didn't converge after "
+std::to_string(maxFails)+" time-step divisions. dt="
+std::to_string(double(simulator().timeStepSize()));
throw std::runtime_error(errorMessage);
}
/*!
* \brief Returns the minimum allowable size of a time step.
*/
Scalar minTimeStepSize() const
{ return Parameters::get<TypeTag, Parameters::MinTimeStepSize>(); }
/*!
* \brief Returns the maximum number of subsequent failures for the time integration
* before giving up.
*/
unsigned maxTimeIntegrationFailures() const
{ return Parameters::get<TypeTag, Parameters::MaxTimeStepDivisions>(); }
/*!
* \brief Returns if we should continue with a non-converged solution instead of
* giving up if we encounter a time step size smaller than the minimum time
* step size.
*/
bool continueOnConvergenceError() const
{ return Parameters::get<TypeTag, Parameters::ContinueOnConvergenceError>(); }
/*!
* \brief Impose the next time step size to be used externally.
*/
void setNextTimeStepSize(Scalar dt)
{ nextTimeStepSize_ = dt; }
/*!
* \brief Called by Opm::Simulator whenever a solution for a
* time step has been computed and the simulation time has
* been updated.
*/
Scalar nextTimeStepSize() const
{
if (nextTimeStepSize_ > 0.0)
return nextTimeStepSize_;
Scalar dtNext = std::min(Parameters::get<TypeTag, Parameters::MaxTimeStepSize>(),
newtonMethod().suggestTimeStepSize(simulator().timeStepSize()));
if (dtNext < simulator().maxTimeStepSize()
&& simulator().maxTimeStepSize() < dtNext*2)
{
dtNext = simulator().maxTimeStepSize()/2 * 1.01;
}
return dtNext;
}
/*!
* \brief Returns true if a restart file should be written to
* disk.
*
* The default behavior is to write one restart file every 10 time
* steps. This method should be overwritten by the
* implementation if the default behavior is deemed insufficient.
*/
bool shouldWriteRestartFile() const
{
return simulator().timeStepIndex() > 0 &&
(simulator().timeStepIndex() % 10 == 0);
}
/*!
* \brief Returns true if the current solution should be written to
* disk (i.e. as a VTK file)
*
* The default behavior is to write out the solution for every
* time step. This method is should be overwritten by the
* implementation if the default behavior is deemed insufficient.
*/
bool shouldWriteOutput() const
{ return true; }
/*!
* \brief Called by the simulator after everything which can be
* done about the current time step is finished and the
* model should be prepared to do the next time integration.
*/
void advanceTimeLevel()
{ model().advanceTimeLevel(); }
/*!
* \brief The problem name.
*
* This is used as a prefix for files generated by the simulation.
* It is highly recommend to overwrite this method in the concrete
* problem which is simulated.
*/
std::string name() const
{ return "sim"; }
/*!
* \brief The GridView which used by the problem.
*/
const GridView& gridView() const
{ return gridView_; }
/*!
* \brief The coordinate of the corner of the GridView's bounding
* box with the smallest values.
*/
const GlobalPosition& boundingBoxMin() const
{ return boundingBoxMin_; }
/*!
* \brief The coordinate of the corner of the GridView's bounding
* box with the largest values.
*/
const GlobalPosition& boundingBoxMax() const
{ return boundingBoxMax_; }
/*!
* \brief Returns the mapper for vertices to indices.
*/
const VertexMapper& vertexMapper() const
{ return vertexMapper_; }
/*!
* \brief Returns the mapper for elements to indices.
*/
const ElementMapper& elementMapper() const
{ return elementMapper_; }
/*!
* \brief Returns Simulator object used by the simulation
*/
Simulator& simulator()
{ return simulator_; }
/*!
* \copydoc simulator()
*/
const Simulator& simulator() const
{ return simulator_; }
/*!
* \brief Returns numerical model used for the problem.
*/
Model& model()
{ return simulator_.model(); }
/*!
* \copydoc model()
*/
const Model& model() const
{ return simulator_.model(); }
/*!
* \brief Returns object which implements the Newton method.
*/
NewtonMethod& newtonMethod()
{ return model().newtonMethod(); }
/*!
* \brief Returns object which implements the Newton method.
*/
const NewtonMethod& newtonMethod() const
{ return model().newtonMethod(); }
// \}
/*!
* \brief return restriction and prolongation operator
* \note This method has to be overloaded by the implementation.
*/
RestrictProlongOperator restrictProlongOperator()
{
return RestrictProlongOperator();
}
/*!
* \brief Mark grid cells for refinement or coarsening
* \note This method has to be overloaded in derived classes to proper implement
* marking of grid entities.
*
* \return number of marked cells (default is 0)
*/
unsigned markForGridAdaptation()
{
return 0;
}
/*!
* \brief This method writes the complete state of the problem
* to the harddisk.
*
* The file will start with the prefix returned by the name()
* method, has the current time of the simulation clock in it's
* name and uses the extension <tt>.ers</tt>. (Ewoms ReStart
* file.) See Opm::Restart for details.
*
* \tparam Restarter The serializer type
*
* \param res The serializer object
*/
template <class Restarter>
void serialize(Restarter& res)
{
if (enableVtkOutput_())
defaultVtkWriter_->serialize(res);
}
/*!
* \brief This method restores the complete state of the problem
* from disk.
*
* It is the inverse of the serialize() method.
*
* \tparam Restarter The deserializer type
*
* \param res The deserializer object
*/
template <class Restarter>
void deserialize(Restarter& res)
{
if (enableVtkOutput_())
defaultVtkWriter_->deserialize(res);
}
/*!
* \brief Write the relevant secondary variables of the current
* solution into an VTK output file.
*
* \param verbose Specify if a message should be printed whenever a file is written
*/
void writeOutput(bool verbose = true)
{
if (!enableVtkOutput_())
return;
if (verbose && gridView().comm().rank() == 0)
std::cout << "Writing visualization results for the current time step.\n"
<< std::flush;
// calculate the time _after_ the time was updated
Scalar t = simulator().time() + simulator().timeStepSize();
defaultVtkWriter_->beginWrite(t);
model().prepareOutputFields();
model().appendOutputFields(*defaultVtkWriter_);
defaultVtkWriter_->endWrite();
}
/*!
* \brief Method to retrieve the VTK writer which should be used
* to write the default ouput after each time step to disk.
*/
VtkMultiWriter& defaultVtkWriter() const
{ return defaultVtkWriter_; }
protected:
Scalar nextTimeStepSize_;
private:
bool enableVtkOutput_() const
{ return Parameters::get<TypeTag, Parameters::EnableVtkOutput>(); }
//! Returns the implementation of the problem (i.e. static polymorphism)
Implementation& asImp_()
{ return *static_cast<Implementation *>(this); }
//! \copydoc asImp_()
const Implementation& asImp_() const
{ return *static_cast<const Implementation *>(this); }
// Grid management stuff
const GridView gridView_;
ElementMapper elementMapper_;
VertexMapper vertexMapper_;
GlobalPosition boundingBoxMin_;
GlobalPosition boundingBoxMax_;
// Attributes required for the actual simulation
Simulator& simulator_;
mutable VtkMultiWriter *defaultVtkWriter_;
};
} // namespace Opm
#endif