opm-simulators/opm/simulators/wells/MultisegmentWell.hpp

332 lines
16 KiB
C++

/*
Copyright 2017 SINTEF Digital, Mathematics and Cybernetics.
Copyright 2017 Statoil ASA.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#define OPM_MULTISEGMENTWELL_HEADER_INCLUDED
#include <opm/simulators/wells/WellInterface.hpp>
#include <opm/simulators/wells/MultisegmentWellEval.hpp>
namespace Opm {
class DeferredLogger;
template<typename TypeTag>
class MultisegmentWell : public WellInterface<TypeTag>
, public MultisegmentWellEval<GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Indices>>
{
public:
using Base = WellInterface<TypeTag>;
using MSWEval = MultisegmentWellEval<GetPropType<TypeTag, Properties::FluidSystem>,
GetPropType<TypeTag, Properties::Indices>>;
using typename Base::Simulator;
using typename Base::IntensiveQuantities;
using typename Base::FluidSystem;
using typename Base::ModelParameters;
using typename Base::MaterialLaw;
using typename Base::Indices;
using typename Base::RateConverterType;
using typename Base::SparseMatrixAdapter;
using typename Base::FluidState;
using Base::has_solvent;
using Base::has_polymer;
using Base::Water;
using Base::Oil;
using Base::Gas;
using typename Base::Scalar;
/// the matrix and vector types for the reservoir
using typename Base::BVector;
using typename Base::Eval;
using typename MSWEval::Equations;
using typename MSWEval::EvalWell;
using typename MSWEval::BVectorWell;
using MSWEval::SPres;
using typename Base::PressureMatrix;
MultisegmentWell(const Well& well,
const ParallelWellInfo<Scalar>& pw_info,
const int time_step,
const ModelParameters& param,
const RateConverterType& rate_converter,
const int pvtRegionIdx,
const int num_components,
const int num_phases,
const int index_of_well,
const std::vector<PerforationData<Scalar>>& perf_data);
void init(const PhaseUsage* phase_usage_arg,
const std::vector<Scalar>& depth_arg,
const Scalar gravity_arg,
const int num_cells,
const std::vector<Scalar>& B_avg,
const bool changed_to_open_this_step) override;
void initPrimaryVariablesEvaluation() override;
/// updating the well state based the current control mode
void updateWellStateWithTarget(const Simulator& simulator,
const GroupState<Scalar>& group_state,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) const override;
/// check whether the well equations get converged for this well
ConvergenceReport getWellConvergence(const Simulator& simulator,
const WellState<Scalar>& well_state,
const std::vector<Scalar>& B_avg,
DeferredLogger& deferred_logger,
const bool relax_tolerance) const override;
/// Ax = Ax - C D^-1 B x
void apply(const BVector& x, BVector& Ax) const override;
/// r = r - C D^-1 Rw
void apply(BVector& r) const override;
/// using the solution x to recover the solution xw for wells and applying
/// xw to update Well State
void recoverWellSolutionAndUpdateWellState(const Simulator& simulator,
const BVector& x,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override;
/// computing the well potentials for group control
void computeWellPotentials(const Simulator& simulator,
const WellState<Scalar>& well_state,
std::vector<Scalar>& well_potentials,
DeferredLogger& deferred_logger) override;
void updatePrimaryVariables(const Simulator& simulator,
const WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override;
void solveEqAndUpdateWellState(const Simulator& simulator,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override; // const?
void calculateExplicitQuantities(const Simulator& simulator,
const WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override; // should be const?
void updateIPRImplicit(const Simulator& simulator,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override;
void updateProductivityIndex(const Simulator& simulator,
const WellProdIndexCalculator<Scalar>& wellPICalc,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) const override;
Scalar connectionDensity(const int globalConnIdx,
const int openConnIdx) const override;
void addWellContributions(SparseMatrixAdapter& jacobian) const override;
void addWellPressureEquations(PressureMatrix& mat,
const BVector& x,
const int pressureVarIndex,
const bool use_well_weights,
const WellState<Scalar>& well_state) const override;
std::vector<Scalar>
computeCurrentWellRates(const Simulator& simulator,
DeferredLogger& deferred_logger) const override;
std::optional<Scalar>
computeBhpAtThpLimitProdWithAlq(const Simulator& simulator,
const SummaryState& summary_state,
const Scalar alq_value,
DeferredLogger& deferred_logger) const override;
std::vector<Scalar> getPrimaryVars() const override;
int setPrimaryVars(typename std::vector<Scalar>::const_iterator it) override;
protected:
// regularize msw equation
bool regularize_;
// the intial amount of fluids in each segment under surface condition
std::vector<std::vector<Scalar> > segment_fluid_initial_;
mutable int debug_cost_counter_ = 0;
// updating the well_state based on well solution dwells
void updateWellState(const Simulator& simulator,
const BVectorWell& dwells,
WellState<Scalar>& well_state,
DeferredLogger& deferred_logger,
const Scalar relaxation_factor = 1.0);
// computing the accumulation term for later use in well mass equations
void computeInitialSegmentFluids(const Simulator& simulator);
// compute the pressure difference between the perforation and cell center
void computePerfCellPressDiffs(const Simulator& simulator);
template<class Value>
void computePerfRate(const IntensiveQuantities& int_quants,
const std::vector<Value>& mob_perfcells,
const std::vector<Scalar>& Tw,
const int seg,
const int perf,
const Value& segment_pressure,
const bool& allow_cf,
std::vector<Value>& cq_s,
Value& perf_press,
PerforationRates<Scalar>& perf_rates,
DeferredLogger& deferred_logger) const;
template<class Value>
void computePerfRate(const Value& pressure_cell,
const Value& rs,
const Value& rv,
const std::vector<Value>& b_perfcells,
const std::vector<Value>& mob_perfcells,
const std::vector<Scalar>& Tw,
const int perf,
const Value& segment_pressure,
const Value& segment_density,
const bool& allow_cf,
const std::vector<Value>& cmix_s,
std::vector<Value>& cq_s,
Value& perf_press,
PerforationRates<Scalar>& perf_rates,
DeferredLogger& deferred_logger) const;
// compute the fluid properties, such as densities, viscosities, and so on, in the segments
// They will be treated implicitly, so they need to be of Evaluation type
void computeSegmentFluidProperties(const Simulator& simulator,
DeferredLogger& deferred_logger);
// get the mobility for specific perforation
template<class Value>
void getMobility(const Simulator& simulator,
const int perf,
std::vector<Value>& mob,
DeferredLogger& deferred_logger) const;
void computeWellRatesAtBhpLimit(const Simulator& simulator,
std::vector<Scalar>& well_flux,
DeferredLogger& deferred_logger) const;
void computeWellRatesWithBhp(const Simulator& simulator,
const Scalar& bhp,
std::vector<Scalar>& well_flux,
DeferredLogger& deferred_logger) const override;
void computeWellRatesWithBhpIterations(const Simulator& simulator,
const Scalar& bhp,
std::vector<Scalar>& well_flux,
DeferredLogger& deferred_logger) const override;
std::vector<Scalar>
computeWellPotentialWithTHP(const WellState<Scalar>& well_state,
const Simulator& simulator,
DeferredLogger& deferred_logger) const;
bool computeWellPotentialsImplicit(const Simulator& simulator,
std::vector<Scalar>& well_potentials,
DeferredLogger& deferred_logger) const;
Scalar getRefDensity() const override;
bool iterateWellEqWithControl(const Simulator& simulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState<Scalar>& well_state,
const GroupState<Scalar>& group_state,
DeferredLogger& deferred_logger) override;
bool iterateWellEqWithSwitching(const Simulator& simulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState<Scalar>& well_state,
const GroupState<Scalar>& group_state,
DeferredLogger& deferred_logger,
const bool fixed_control = false,
const bool fixed_status = false) override;
void assembleWellEqWithoutIteration(const Simulator& simulator,
const double dt,
const Well::InjectionControls& inj_controls,
const Well::ProductionControls& prod_controls,
WellState<Scalar>& well_state,
const GroupState<Scalar>& group_state,
DeferredLogger& deferred_logger) override;
void updateWaterThroughput(const double dt, WellState<Scalar>& well_state) const override;
EvalWell getSegmentSurfaceVolume(const Simulator& simulator, const int seg_idx) const;
// turn on crossflow to avoid singular well equations
// when the well is banned from cross-flow and the BHP is not properly initialized,
// we turn on crossflow to avoid singular well equations. It can result in wrong-signed
// well rates, it can cause problem for THP calculation
// TODO: looking for better alternative to avoid wrong-signed well rates
bool openCrossFlowAvoidSingularity(const Simulator& simulator) const;
// for a well, when all drawdown are in the wrong direction, then this well will not
// be able to produce/inject .
bool allDrawDownWrongDirection(const Simulator& simulator) const;
std::optional<Scalar>
computeBhpAtThpLimitProd(const WellState<Scalar>& well_state,
const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
std::optional<Scalar>
computeBhpAtThpLimitInj(const Simulator& ebos_simulator,
const SummaryState& summary_state,
DeferredLogger& deferred_logger) const;
Scalar maxPerfPress(const Simulator& simulator) const;
// check whether the well is operable under BHP limit with current reservoir condition
void checkOperabilityUnderBHPLimit(const WellState<Scalar>& well_state,
const Simulator& ebos_simulator,
DeferredLogger& deferred_logger) override;
// check whether the well is operable under THP limit with current reservoir condition
void checkOperabilityUnderTHPLimit(const Simulator& ebos_simulator,
const WellState<Scalar>& well_state,
DeferredLogger& deferred_logger) override;
// updating the inflow based on the current reservoir condition
void updateIPR(const Simulator& ebos_simulator,
DeferredLogger& deferred_logger) const override;
};
}
#ifndef OPM_MULTISEGMENTWELL_IMPL_HEADER_INCLUDED
#include "MultisegmentWell_impl.hpp"
#endif
#endif // OPM_MULTISEGMENTWELL_HEADER_INCLUDED