opm-simulators/opm/autodiff/WellStateFullyImplicitBlackoil.hpp
Kai Bao 75e0ff0018 Trying always to give a valid control when initing WellState.
Without the fix, when we specify GRUP control for WCONINJE, the control
mode will be initialized to be -1.
2016-11-16 13:25:35 +01:00

258 lines
11 KiB
C++

/*
Copyright 2014 SINTEF ICT, Applied Mathematics.
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#define OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED
#include <opm/core/wells.h>
#include <opm/core/well_controls.h>
#include <opm/core/simulator/WellState.hpp>
#include <opm/core/props/BlackoilPhases.hpp>
#include <opm/common/ErrorMacros.hpp>
#include <vector>
#include <cassert>
#include <string>
#include <utility>
#include <map>
#include <algorithm>
#include <array>
namespace Opm
{
/// The state of a set of wells, tailored for use by the fully
/// implicit blackoil simulator.
class WellStateFullyImplicitBlackoil
: public WellState
{
typedef WellState BaseType;
public:
typedef BaseType :: WellMapType WellMapType;
using BaseType :: wellRates;
using BaseType :: bhp;
using BaseType :: perfPress;
using BaseType :: wellMap;
using BaseType :: numWells;
using BaseType :: numPhases;
/// Allocate and initialize if wells is non-null. Also tries
/// to give useful initial values to the bhp(), wellRates()
/// and perfPhaseRates() fields, depending on controls
template <class State, class PrevState>
void init(const Wells* wells, const State& state, const PrevState& prevState)
{
// call init on base class
BaseType :: init(wells, state);
// if there are no well, do nothing in init
if (wells == 0) {
return;
}
const int nw = wells->number_of_wells;
if( nw == 0 ) return ;
// Initialize perfphaserates_, which must be done here.
const int np = wells->number_of_phases;
const int nperf = wells->well_connpos[nw];
// Ensure that we start out with zero rates by default.
perfphaserates_.clear();
perfphaserates_.resize(nperf * np, 0.0);
for (int w = 0; w < nw; ++w) {
assert((wells->type[w] == INJECTOR) || (wells->type[w] == PRODUCER));
const WellControls* ctrl = wells->ctrls[w];
if (well_controls_well_is_stopped(ctrl)) {
// Shut well: perfphaserates_ are all zero.
} else {
const int num_perf_this_well = wells->well_connpos[w + 1] - wells->well_connpos[w];
// Open well: Initialize perfphaserates_ to well
// rates divided by the number of perforations.
for (int perf = wells->well_connpos[w]; perf < wells->well_connpos[w + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfphaserates_[np*perf + p] = wellRates()[np*w + p] / double(num_perf_this_well);
}
perfPress()[perf] = state.pressure()[wells->well_cells[perf]];
}
}
}
// Initialize current_controls_.
// The controls set in the Wells object are treated as defaults,
// and also used for initial values.
current_controls_.resize(nw);
for (int w = 0; w < nw; ++w) {
current_controls_[w] = well_controls_get_current(wells->ctrls[w]);
}
well_potentials_.clear();
well_potentials_.resize(nperf * np, 0.0);
// intialize wells that have been there before
// order may change so the mapping is based on the well name
if( ! prevState.wellMap().empty() )
{
typedef typename WellMapType :: const_iterator const_iterator;
const_iterator end = prevState.wellMap().end();
for (int w = 0; w < nw; ++w) {
std::string name( wells->name[ w ] );
const_iterator it = prevState.wellMap().find( name );
if( it != end )
{
const int oldIndex = (*it).second[ 0 ];
const int newIndex = w;
// bhp
bhp()[ newIndex ] = prevState.bhp()[ oldIndex ];
// wellrates
for( int i=0, idx=newIndex*np, oldidx=oldIndex*np; i<np; ++i, ++idx, ++oldidx )
{
wellRates()[ idx ] = prevState.wellRates()[ oldidx ];
}
// perfPhaseRates
int oldPerf_idx = (*it).second[ 1 ];
const int num_perf_old_well = (*it).second[ 2 ];
const int num_perf_this_well = wells->well_connpos[newIndex + 1] - wells->well_connpos[newIndex];
// copy perforation rates when the number of perforations is equal,
// otherwise initialize perfphaserates to well rates divided by the number of perforations.
if( num_perf_old_well == num_perf_this_well )
{
int oldPerf = oldPerf_idx *np;
for (int perf = wells->well_connpos[ newIndex ]*np;
perf < wells->well_connpos[ newIndex + 1]*np; ++perf, ++oldPerf )
{
perfPhaseRates()[ perf ] = prevState.perfPhaseRates()[ oldPerf ];
}
} else {
for (int perf = wells->well_connpos[newIndex]; perf < wells->well_connpos[newIndex + 1]; ++perf) {
for (int p = 0; p < np; ++p) {
perfPhaseRates()[np*perf + p] = wellRates()[np*newIndex + p] / double(num_perf_this_well);
}
}
}
// perfPressures
if( num_perf_old_well == num_perf_this_well )
{
for (int perf = wells->well_connpos[ newIndex ];
perf < wells->well_connpos[ newIndex + 1]; ++perf, ++oldPerf_idx )
{
perfPress()[ perf ] = prevState.perfPress()[ oldPerf_idx ];
}
}
// currentControls
const int old_control_index = prevState.currentControls()[ oldIndex ];
if (old_control_index < well_controls_get_num(wells->ctrls[w])) {
// If the set of controls have changed, this may not be identical
// to the last control, but it must be a valid control.
currentControls()[ newIndex ] = old_control_index;
} else {
assert(well_controls_get_num(wells->ctrls[w]) > 0);
currentControls()[ newIndex ] = 0;
}
}
}
}
}
template <class State>
void resize(const Wells* wells, const State& state) {
const WellStateFullyImplicitBlackoil dummy_state{}; // Init with an empty previous state only resizes
init(wells, state, dummy_state) ;
}
/// One rate per phase and well connection.
std::vector<double>& perfPhaseRates() { return perfphaserates_; }
const std::vector<double>& perfPhaseRates() const { return perfphaserates_; }
/// One current control per well.
std::vector<int>& currentControls() { return current_controls_; }
const std::vector<int>& currentControls() const { return current_controls_; }
/// One rate per phase and well connection.
std::vector<double>& wellPotentials() { return well_potentials_; }
const std::vector<double>& wellPotentials() const { return well_potentials_; }
data::Wells report(const PhaseUsage &pu) const override {
data::Wells res = WellState::report(pu);
const int nw = this->numWells();
if( nw == 0 ) return res;
const int np = pu.num_phases;
using rt = data::Rates::opt;
std::vector< rt > phs( np );
if( pu.phase_used[BlackoilPhases::Aqua] ) {
phs.at( pu.phase_pos[BlackoilPhases::Aqua] ) = rt::wat;
}
if( pu.phase_used[BlackoilPhases::Liquid] ) {
phs.at( pu.phase_pos[BlackoilPhases::Liquid] ) = rt::oil;
}
if( pu.phase_used[BlackoilPhases::Vapour] ) {
phs.at( pu.phase_pos[BlackoilPhases::Vapour] ) = rt::gas;
}
/* this is a reference or example on **how** to convert from
* WellState to something understood by opm-output. it is intended
* to be properly implemented and maintained as a part of
* simulators, as it relies on simulator internals, details and
* representations.
*/
for( const auto& wt : this->wellMap() ) {
const auto w = wt.second[ 0 ];
auto& well = res.at( wt.first );
well.control = this->currentControls()[ w ];
int local_comp_index = 0;
for( auto& comp : well.completions ) {
const auto rates = this->perfPhaseRates().begin()
+ (np * wt.second[ 1 ])
+ (np * local_comp_index);
++local_comp_index;
for( int i = 0; i < np; ++i ) {
comp.rates.set( phs[ i ], *(rates + i) );
}
}
assert(local_comp_index == this->wells_->well_connpos[ w + 1 ] - this->wells_->well_connpos[ w ]);
}
return res;
}
private:
std::vector<double> perfphaserates_;
std::vector<int> current_controls_;
std::vector<double> well_potentials_;
};
} // namespace Opm
#endif // OPM_WELLSTATEFULLYIMPLICITBLACKOIL_HEADER_INCLUDED